
Axon.ivy 7.2

Engine Guide

Axon.ivy 7.2: Engine Guide

Publication date 13.11.2018
Copyright © 2008-2018 AXON Ivy AG

iii

1. Introduction .. 1
What is Axon.ivy .. 1
About this guide ... 2
Installation Environment .. 2
Engine Types ... 3

2. Getting Started .. 6
Introduction ... 6
Windows (with UI tools) .. 6
Debian Linux ... 18
Linux (with console tools only) ... 24
Docker .. 31

3. Installation .. 33
Upgrading from an older version ... 33
Standard Edition Installation ... 34
Enterprise Edition Installation ... 35
Install Axon.ivy Engine .. 36
System Database ... 39

4. Configuration .. 49
Engine Configuration ... 49
Configuration File Reference ... 52

5. Security ... 77
General .. 77
Front-end Server ... 77
HTTPS .. 80
Axon.ivy Engine ... 80

6. Integration .. 82
Introduction .. 82
Apache Integration .. 83
Microsoft IIS Integration .. 85
Axon.ivy Cluster Integration ... 99
Web Application Firewall ... 101

7. Administration ... 104
Deployment .. 104
Standard Processes ... 107
Miscellaneous ... 112

8. Monitoring .. 114
Logging ... 114
Process Element Performance Statistic and Analysis .. 116
Java Management Extensions (JMX) .. 118
VisualVM ... 121

9. Tool Reference .. 124
AxonIvyEngine ... 124
EngineConfigCli .. 124
Engine Service .. 125
Launch Configuration ... 126
Engine Configuration UI ... 128
Admin UI ... 135
Control Center ... 166

10. Troubleshooting ... 170
Troubleshooting ... 170

1

Chapter 1. Introduction
What is Axon.ivy

Axon.ivy is a Digital Business Platform that simplifies and automates the interaction of humans with their digital systems.
The platform is typically in charge of the most precious business cases where companies produce value. Here is how we do it:

1. Visualize: Our platform allows you to document business processes fast and intuitive. A shared view on users, roles,
departments and technical systems that are involved in a business process improves your work. HR recruitment profiles
become clearer, bottle necks become obvious, ideas for effective improvements arise by anyone who is involved in the
process.

2. Automate: Documented processes are good. But what you really want is to drive your highly valuable processes
automatically. Often the daily work of employees is interrupted by searching and filtering data from various tools and
by feeding this data into other technical systems. Even tough value is produced in a well-known business case, there is
a lack of a clear interface which guides the involved users through the process. Highly valuable data is often divided
and stored in various dedicated technical systems. With Axon.ivy you can drive your process automatically. People,
data and technical systems can easily be orchestrated by our platform. An initial application that leads users through the
process can be generated without the need to hire a software engineer. People can contribute to the process by using their
favourite device such as a smartphone or workstation.

3. Improve: The digitalization of your company can evolve over time, we favour small predictable improvements over
big bang solutions. The Axon.ivy Digital Business Platform allows you to start simple and fast with your existing
environment. You may start with just task notifications that are sent to users that should contribute to a running process.
And eventually the platform becomes your single interface for all your business interactions. You will be able to measure
KPIs based on the highly valuable data that is produced during the execution of your business processes. Based on
these insights, you can advance your business constantly and effectively. The cost of business transformations become
reasonable and predictable.

The Axon.ivy Digital Business Platform consists of:

• The Axon.ivy Designer - where you draw, simulate and implement automated business processes.

• The Axon.ivy Engine - an application server that executes your business cases and provides a shared interface for process
users.

Why Axon.ivy?
Axon.ivy is exciting for everyone that partakes on your digital transformation journey.

• Business: We enable you to start your personal digital transformation journey and make new business opportunities
possible. You are still the captain of your ship, start with simple automations and transform essential parts of your business
when you gain trust and confidence.

• Business Analysts: It has never been easier to document processes fast and intuitive. The process simulation allows you to
verify that you have a shared view how processes should be executed. Setup a simple structure for the data of a processes
and you even get a simple executable application with generated front ends that are meaningful. No software engineer is
required to create an already powerful application from scratch.

• Developers: Develop your application on a rich stack of Java frameworks that withstood the test of time. We minimize
your technology evaluation effort by giving you a set of libraries and an IDE that match perfectly together. This allows you
to quickly jump into projects and deliver value. While you always have the ability to break out of our predefined tooling
and use advanced features of Tomcat, JPA, JSF, JAX-RS or whatever you require.

• Operations: We deliver packages for popular platforms (Linux, Windows). No big change, we orchestrate your existing
systems. We support many DB vendors (Oracle, Microsoft SQL Server, MySQL, PostgreSQL). Effective monitoring and
logging interfaces are provided to give you a safety that the application is healthy and accessible.

Introduction

2

About this guide
You are now reading Axon.ivy Engine documentation.

In case you want to know more on

• Getting the latest Axon.ivy version: Go to https://developer.axonivy.com/download/

• System requirements: Please read Readme.html in the installation directory.

• Working with Axon.ivy Engine: Start with the Getting Started chapter.

• Demo projects: The Axon.ivy Designer ships with several demo projects, which can be deployed to the Axon.ivy Engine.

• How to draw, simulate and implement automated business processes: Please read the Designer Guide (in the installation
folder of an Axon.ivy Designer)

• Upgrading an existing installation: Please read MigrationNotes.html (located in the installation folder).

All above mentioned documentations are brief and tend to describe only necessary functionality. We highly encourage reading
these documentations to speed up your development, to get to know new features or to eliminate potential problems.

Installation Environment
The following diagram shows the installation environment of an Axon.ivy Engine:

Figure 1.1. Axon.ivy Engine Installation

The Axon.ivy Engine needs a system database to store its configuration, users, roles and assigned permissions and the states,
cases, tasks from the deployed applications. Next, it needs file directories where the deployed projects are stored. The Axon.ivy
Engine integrates a Tomcat Servlet Engine that is responsible to receive HTTP or HTTPS requests from client applications

https://developer.axonivy.com/download/

Introduction

3

and to send back appropriate responses (similar to a web server). The client applications itself are either Web Applications that
run in a web browser or Rich Internet Applications that run in a Java Virtual Machine (JVM). Both kind of client applications
communicate over HTTP or HTTPS directly with the Servlet Engine. In a productive environment, normally a Microsoft
Internet Information Server (IIS), Apache Web Server, NGINX reverse proxy or a web application firewall (WAF) often
combined with an identity and access management (IAM) system is put in front of the Axon.ivy Engine. The front-end servers
are then responsible to forward the requests to the Axon.ivy Engine Servlet Container. Also, the users are imported from an
external security system like a Microsoft Active Directory or Novell eDirectory. Axon.ivy applications can integrate with third
party external systems like databases, web services or application servers. Axon.ivy Engine also integrates an Elasticsearch
server. Instead using the integrated Elasticsearch server also an external Elasticsearch server can be used..

Tip

It is good practice to separate the data directory where you store the deployed project and other data files from
the Engine installation directory. This will later simplify a migration to newer Engine versions.

Example:

Path Description

.../AxonIvyEngine/Data/Applications/HRM/... Directory where the deployed projects for the HRM
application are stored.

.../AxonIvyEngine/Data/Applications/FinTech/... Directory where the deployed projects for the FinTech
application are stored.

.../AxonIvyEngine/Data/ElasticSearch/... Directory where the Business Data search indexes are
stored.

.../AxonIvyEngine/6.0.1/... Installation directory of Axon.ivy Engine version 6.0.1
(can be removed if no longer needed)

.../AxonIvyEngine/6.1.0/... Installation directory of Axon.ivy Engine version 6.1.0
(can be removed if no longer needed)

.../AxonIvyEngine/6.2.0/... Installation directory of Axon.ivy Engine version 6.2.0

Table 1.1. How to organize data and installation directory

Engine Types
There are two different Axon.ivy Engine types:

• Standard Edition (formerly known as "Standard ")

• Enterprise Edition (Clustered Engine, formerly known as "Cluster ")

Axon.ivy Engine Standard Edition

The Axon.ivy Engine Standard Edition is installed on a single machine. A DBMS that can hold the Axon.ivy system database
is the only special infrastructure it needs. The deployed projects can be stored on a local harddisk on same machine that the
Axon.ivy Engine Standard Edition is running on.

Introduction

4

Figure 1.2. Axon.ivy Engine Standard Edition

Axon.ivy Engine Enterprise Edition
The Axon.ivy Engine Enterprise Edition is a cluster of multiple Axon.ivy Engine instances. It is built on a load balancer
that receives requests from the clients and forwards them to multiple Axon.ivy Engine nodes typically running on different
machines. The different nodes of an Axon.ivy Engine Enterprise Edition all share the same system database which is normally
stored on a dedicated database. The deployed projects are stored on a file system that can be accessed by all nodes.

Figure 1.3. Axon.ivy Engine Enterprise Edition

Axon.ivy Engine Nodes are typically installed on multiple server machines, but it is also possible to install more than one
Axon.ivy Engine Node on a single server machine. The load balancer can be realized either by a hardware load balancer or
by an IIS or Apache web server that distributes the incoming requests to the installed Axon.ivy Engine Nodes.

What engine edition do I need?
The Axon.ivy Engine Enterprise Edition has two major advantages compared to the Standard Edition:

Introduction

5

• Performance and scalability: An Axon.ivy Engine Enterprise Edition can serve more clients than the Axon.ivy Engine
Standard Edition. If your number of clients increases, you can add another Engine node to your Axon.ivy Engine cluster.
If you have a lot of sessions it may even be better to have two Axon.ivy Engine nodes on the same server machine instead
of having a single Standard Edition. Because each session needs memory on the engine and Axon.ivy can handle two
processes with medium memory footprints (i.e. Engine nodes) faster than one process with a large memory footprint (i.e.
Standard Edition).

• High availability: In an Axon.ivy Engine Enterprise Edition installation, a single node may crash without affecting the
other nodes, which still serve clients. However, if you require high availability of your Axon.ivy Engine you also need
to ensure that all other components the engine is depending on (Load Balancer, Database Server, File Share) have a high
availability.

The disadvantages of the Axon.ivy Engine Enterprise Edition compared to the Standard Edition are:

• higher complexity of the system

• higher hardware costs

• higher licence fees

6

Chapter 2. Getting Started
Introduction

This chapter helps you getting started with the Axon.ivy Engine. You will learn how to install and configure the Engine and
finally, how to deploy your Axon.ivy projects. If you are a Windows user and used to install and configure software using
the UI then the first section Windows is a good starting point for you. If you are an experienced Linux user and you are used
to install and configure software using the console then the second section Linux is the right starting point for you. Note,
that on both systems, Windows and Linux, Axon.ivy Engine can be installed and configured using the UI or the console. The
Axon.ivy engine also runs in a container environment like Docker.

Windows (with UI tools)

Download the Engine
Open a web browser and navigate to https://developer.axonivy.com. Press on the Download button to navigate to the download
page. Press the Download Axon.ivy Engine button:

Save the AxonIvyEngine*.zip file to your temporary download folder.

Install the Engine
We suggest that you install Axon.ivy Engine into a new folder called ivy\engine on one of your drives (e.g. c:\ivy\engine). To
do so open a Windows Explorer and navigate to C:\ and create those new folders. Then, navigate to your temporary download
folder and copy the file AxonIvyEngine*.zip to the newly created folder.

https://developer.axonivy.com

Getting Started

7

Right click the AxonIvyEngine*.zip file and press Extract All ... from the context menu.

On the appearing dialog press the Extract button. After the AxonIvyEngine*.zip is extracted navigate into the new
AxonIvyEngine* folder. The content of the installation folder looks like this:

The most important sub folders in the Axon.ivy Engine installation folder are:

• the bin folder which contains all the executables

• the configuration folder which contains the configuration files.

Start the Engine

Navigate to the bin folder and double click on the ControlCenter.exe file to start the Control Center. You can use this tool to
start and stop the Axon.ivy Engine in different ways (as Windows Service, as normal user process, with a console window).
Select the Axon.ivy Engine and press the green play button to start the Axon.ivy Engine as a normal user process:

Getting Started

8

You can use the Control Center also to register Axon.ivy Engine as Windows Service. Moreover, you can add other
existing Windows Services to the list of Engines to start and stop them with the Control Center. For example, if you
have installed your database server on the same machine you can add the Windows Service of the database server.

After the Axon.ivy Engine has started a web browser is opened and the main page of the Axon.ivy Engine is displayed.

Use the Engine

The main page of the Axon.ivy Engine looks like this:

The Axon.ivy Engine is running in Demo Mode. This is because you did not install a valid license yet nor did you configure
a system database. Note, that everything that you do with the Axon.ivy Engine running in Demo Mode is lost when you shut
down the engine. However, you can use the engine also in Demo Mode and tryout the pre-installed Portal application by
clicking on the Portal Home link. To login use one of the predefined demo users: demo, guest or admin. The passwords of
the demo users are equal to the user names (E.g. demo for the demo user). Login as demo user and try to create a TODO
task for the guest user using the Axon.ivy Selfservice process:

Getting Started

9

Configure the TODO task as follows:

Getting Started

10

Start the workflow by pressing the Start Workflow button. After that, logout, then login again as guest user. On the task
list, you now see the new TODO task that you created before. Try to work on the task by clicking on the arrow located on
the right side of the task:

Go ahead and play around with the Selfservice process. Try out different types of tasks.

In Axon.ivy a task is a piece of work (a part of a process) that is assigned to a user or role. A user to whom a task is
assigned or who has the role to which a task is assigned can work on the task. When a user works on a task the task
disappears from the task list of other users who might also able to work on the task. This means only one user can really
work on a task at the same time. In a process, it is possible to define parallel tasks. Therefore, it is possible that two or
more users work parallel on different tasks of the same process instance. In Axon.ivy a process instance is called a case.

Configure the Engine
Now, let's configure the Axon.ivy Engine with a license and system database.

To start with that you must first request a valid Axon.ivy Engine license. Either you get a license for your productive system
through one of our sales personal or contact our support for time limited tryout licenses. If you do not have a license you can
skip this section and continue with the next section.

Moreover, you need to have a supported database server up and running with a database user that has the rights to create new
databases. The configuration and creation of the system database differs a little bit depending on the database system you
use. We will use a PostgreSQL database server.

You can start the configuration on the main page of the Axon.ivy Engine (e.g. http://localhost:8080/ivy) by clicking on the
Config menu.

http://localhost:8080/ivy

Getting Started

11

On the first page use the Upload Licence button to install your license file.

Some information of your license will be displayed on the page as soon as you have installed it. Press the Next button to
continue.

On the next screen choose the correct Database and Driver (in our case PostgreSQL). Configure the Host and Port where
your database server is running and listening. Configure the Username and Password of a database user that has the right
to create a new database on the database server.

Press the Create Database button. On the appearing dialog configure the name of the Axon.ivy system database. Press the
Create Database button to create the system database.

Getting Started

12

As soon as the database creation is finished the following dialog appears:

Press the Save and connect button to save the configuration and connect to the newly created system database.

The system database is used by the Axon.ivy Engine to store configurations, users, roles, process instances, tasks and
process data.

Press the Next button.

On the next page, you can configure system administrators.

Fill in the form and press the Add Administrator button.

Administrators can administrate the Axon.ivy Engine. For example, they can add or remove users, assign user to roles,
deploy projects, etc.

Therefore, you need at least one administrator to administrate the Axon.ivy Engine.

The Email addresses of administrators are used to send mail notifications if license problems occur.

Getting Started

13

Press the Next button.

On the next page configure which protocol connectors and ports the Axon.ivy Engine internal web server should provide.
You do not need the AJP protocol. So let's disable it.

The Axon.ivy Engine internal web server provides connectors for the following protocols:

HTTP Protocol used by web browser to communicate with a web server. This protocol is not secure since the
communication is not encrypted. Axon.ivy Engine uses port 8080 by default.

HTTPS Like HTTP but secure. It uses TLS to encrypt the communication between the web browser and server.
Axon.ivy Engine uses port 8443 by default.

AJP This protocol is used to communicate with a Microsoft IIS or Apache httpd front-end server. AJP means
Apache Jakarta Protocol. Axon.ivy Engine uses port 8009 by default.

Press the NEXT button.

On the next page, the configuration is summarized.

Press the Save button to save the configuration. Switch back to the Control Center and restart the Axon.ivy Engine by
stopping and starting it again.

Note, that the HTTP port of the Axon.ivy Engine may have changed. If you did change the HTTP settings. So open again a
web browser and navigate to http://localhost:8080/ivy. Have you seen that the header with the demo mode message is gone?
You now have a production ready Axon.ivy Engine.

http://localhost:8080/ivy

Getting Started

14

The Config menu is only available in demo mode. If you want to reconfigure an Axon.ivy Engine not running in demo
mode use the AxonIvyEngineConfig.exe tool in the bin folder instead.

Deploy an Axon.ivy project to the Engine

Let's deploy an Axon.ivy project to the Axon.ivy Engine. To do so install an Axon.ivy Designer first so that you have demo
projects available that you can deploy. Simple download it from our download page and extract the AxonIvyDesigner*.zip
file to the folder c:\ivy\designer.

Now start the Admin UI tool by clicking on the Admin menu on the Axon.ivy Engine main page. This will start Java Web
Start. A dialog may appear asking if you want to run and trust the Axon.ivy Rich Internet Application . Press the Run button
to proceed. After a few seconds, the Axon.ivy Engine Admin UI appears.

Use the credentials of the administrator that you have added in the configuration section to login. If you are still running in
demo mode you can use AxonIvy/AxonIvy as credentials.

Then, press the Deployment Wizard button on the toolbar of the Applications section on the left side.

Getting Started

15

On the deployment wizard press the Browse button.

Getting Started

16

Choose the file WorkflowDemos.iar in the applications/demos folder of the Axon.ivy Designer installation folder and press
the Open button.

Select the WorkflowDemos project and press the Next button.

Getting Started

17

An Axon.ivy Project is normally stored in a folder. However, the deployment wizard also supports to deploy *.iar files.
An *.iar file is more or less a packed (zipped) Axon.ivy Project folder.

On the next page select the target application Portal.

An Axon.ivy Engine can manage multiple applications. Each application has its own independent user and task
management. A user of one application can only work in that application and not in another application. A task of one
application will never be visible in another application. Therefore, applications can be used either to build multi tenancy
systems or run staging environments (DEV, Q&A, PROD) on the same Axon.ivy Engine.

Warning

There is a default Portal application which should only be used for demo purpose. Create always a new
application for the production environment, because the shipped Portal application has a special lifecycle and
no real migration path.

Press the Next button.

On the next two pages press also the Next button and on the final page press the Deploy button. The project WorkflowDemos
is now deployed to the application Portal. Press the button Finish to close the deployment wizard after the deployment has
finished. The WorkflowDemos is now visible in the Applications tree on the left side of the Admin UI.

Getting Started

18

Close the Admin UI and go back to the web browser. Refresh the main page of the Axon.ivy Engine. There is now a new
section called WorkflowDemos available with new links to start processes.

Congratulations you have installed and configured your first Axon.ivy Engine and deployed your first Axon.ivy project. If
you are interested in how to do the same but only with a console then read the next section. In the next chapter, you will learn
the main concept of the Axon.ivy Engine and the details of how to configure, administrate and monitor it.

Debian Linux
In this section, you will learn how to install and configure an Axon.ivy Engine on a Debian based linux machine.

Install the Engine
There is a convenient DEB package available to install the Axon.ivy Engine. You can download and install it with the following
bash script:

Getting Started

19

cd /tmp
wget https://developer.axonivy.com/permalink/latest/axonivy-engine.deb -O axonivy-engine.deb
sudo dpkg -i axonivy-engine.deb
rm -f /tmp/axonivy-engine.deb

The most important folders of the Axon.ivy Engine are:

• the /usr/lib/axonivy-engine-7x/ is the root installation folder with symlinks to all locations which are relevant to the
engine.

• the /etc/axonivy-engine-7x/ folder which contains the configuration files.

• the /var/lib/axonivy-engine-7x/deploy folder which is used to deploy Axon.ivy projects.

Examine the Engine
After the installation the engine will automatically be started as systemd service. You can check the operative state with
systemctl status axonivy-engine-7x.

The output of the service status will expose an URI where the Axon.ivy Engine page is accessible.

Copy this URL. On your client machine open a web browser and navigate to that URL. This will display the Axon.ivy Engine
main page.

Use the Engine
The main page of the Axon.ivy Engine looks like this:

Getting Started

20

The Axon.ivy Engine is running in Demo Mode. This is because you did not install a valid license yet nor did you configure
a system database. Note, that everything that you do with the Axon.ivy Engine running in Demo Mode is lost when you shut
down the engine. However, you can use the engine also in Demo Mode and tryout the pre-installed Portal application by
clicking on the Portal Home link. To login use one of the predefined demo users: demo, guest or admin. The passwords of
the demo users are equal to the user names (E.g. demo for the demo user). Login as demo user and try to create a TODO
task for the guest user using the Axon.ivy Selfservice process:

Configure the TODO task as follows:

Getting Started

21

Start the workflow by pressing the Start Workflow button. After that, logout, then login again as guest user. On the task
list, you now see the new TODO task that you created before. Try to work on the task by clicking on the arrow located on
the right side of the task:

Getting Started

22

Go ahead and play around with the Selfservice process. Try out different types of tasks.

In Axon.ivy a task is a piece of work (a part of a process) that is assigned to a user or role. A user to whom a task is
assigned or who has the role to which a task is assigned can work on the task. When a user works on a task the task
disappears from the task list of other users who might also able to work on the task. This means only one user can really
work on a task at the same time. In a process, it is possible to define parallel tasks. Therefore, it is possible that two or
more users work parallel on different tasks of the same process instance. In Axon.ivy a process instance is called a case.

Configure the Engine
Now, let's configure the Axon.ivy Engine with a license and system database.

To start with that you must first request a valid Axon.ivy Engine license. Either you get a license for your productive system
through one of our sales personal or contact our support for time limited tryout licenses. If you do not have a license you can
skip this section and continue with the next section.

Moreover, you need to have a supported database server up and running with a database user that has the rights to create new
databases. The configuration and creation of the system database differs a little bit depending on the database system you
use. We will use a PostgreSQL database server.

Shutdown the Axon.ivy Engine first by stopping its service:

systemctl stop axonivy-engine-7x.service

Let's install the license. You can do this by simple copy the license *.lic file into the configuration folder:

cp ~/license.lic /etc/axonivy-engine-7x

Getting Started

23

To configure the system database, use the config-db command of the EngineConfigCli tool. Replace yourdatabasserver
with the name of the host where your PostgreSQL server is running. Replace dbuser and password with the credentials of a
database user that has the rights to create a new database on the database server.

cd /usr/lib/axonivy-engine-7x/bin
./EngineConfigCli config-db org.postgresql.Driver \
jdbc:postgresql://yourdatabaseserver:5432/AxonIvySystemDatabase \
dbuser password

Now, let's create the system database with the create-db command:

./EngineConfigCli create-db

The system database is used by Axon.ivy Engine to store configurations, users, roles, process instances, tasks and
process data.

Next, define an administrator by modifying the “ivy.yaml” file of the /etc/axonivy-engine-7x directory:

sample ivy.yaml which defines a single administrative account:
Administrators:
 admin:
 Password: 1234
 Email: sudo@acme.com

Administrators can administrate the Axon.ivy Engine. For example, they can add or remove users, assign user to roles,
enable or disable applications, etc.

Therefore, you need at least one administrator so that you can later administrate the Axon.ivy Engine.

The Email address of administrators are used to send mail notifications if license problems occur.

Optionally, disable the AJP protocol connector of the Axon.ivy Engine internal web server in the “ivy.webserver.yaml” file
of the /etc/axonivy-engine-7x directory:

sample ivy.yaml which disables AJP, as no front-end webserver is in charge:
Connector:
 AJP:
 Enabled: false

The Axon.ivy Engine internal web server provides connectors for the following protocols:

HTTP Protocol used by web browser to communicate with a web server. This protocol is not secure since the
communication is not encrypted. Axon.ivy Engine uses port 8080 by default.

HTTPS Like HTTP but secure. It uses TLS to encrypt the communication between the web browser and server.
Axon.ivy Engine uses port 8443 by default.

AJP This protocol is used to communicate with an Microsoft IIS or Apache httpd frontend server. AJP=Apache
Jakarta Protocol. Axon.ivy Engine uses port 8009 by default.

Have a look at the “ivy.webserver.yaml” to see what other parts of the webserver and its connectors can be adjusted
for your needs.

Now, start the Axon.ivy Engine again:

systemctl start axonivy-engine-7x.service

Note, that the HTTP port of the Axon.ivy Engine may have changed. If you did change the http settings! So open again a
web browser and navigate to http://yourservername:yourportnumber/ivy. Note, that the header with the demo mode message
is gone. You now have a production ready Axon.ivy Engine.

http://localhost:8080/ivy

Getting Started

24

Deploy an Axon.ivy project to the Engine
Let's deploy an Axon.ivy project to the Axon.ivy Engine. We use demos that are shipped with the Axon.ivy Designer.

cd /var/lib/axonivy-engine-7x/deploy
wget https://developer.axonivy.com/permalink/latest/axonivy-designer-linux.zip -O /tmp/designer.zip
sudo -u ivy unzip -d IvyDemoApp -j /tmp/designer.zip applications/samples/WorkflowDemos.iar applications/samples/ConnectivityDemos.iar applications/samples/HtmlDialogDemos.iar
rm /tmp/designer.zip

Here we deploy a new application by dropping packed (IAR) projects into it. However it is also possible to deploy full
applications as ZIP or unpacked projects.

You can monitor the deployment with:

tail -f IvyDemoApp/*.iar.deploymentLog

As soon as the deployment is finished the iar-files will be postfixed with .deployed. In case of an error the postfix
is .notDeployed. E.g. WorkflowDemos.iar.deployed.

An Axon.ivy Engine can manage multiple applications. Each application has its own user and task management. A user
of one application can only work in that application and not in another application. A task of one application will never
be visible in another application. Therefore, applications can be used to build multi tenancy or stages (DEV, Q&A,
PROD) without to install multiple Axon.ivy Engines.

Refresh the main page of the Axon.ivy Engine. There is now a new application called IvyDemoApp with a section called
WorkflowDemos. Under it links are available to start processes.

Congratulations you have installed and configured your first Axon.ivy Engine and also deployed your first Axon.ivy processes.

Linux (with console tools only)
In this section, you will learn how to install and configure an Axon.ivy Engine on a Linux server only using the console.
On the Linux machine no windowing system has to be installed. However, to test your configuration a client machine with
a web browser is needed.

Prepare your Machine
Before starting with the installation of Axon.ivy Engine prepare your Linux machine with the necessary tools and software
needed for the installation (wget, unzip, Java 8 runtime). Most distribution may have pre-installed these tools but especially
certain Docker images may have not. On Debian (e.g. Ubuntu, etc.) based system use:

apt update
apt install sudo wget unzip openjdk-8-jre-headless

Getting Started

25

Install the Engine
We suggest that you install the Axon.ivy Engine into a new folder called /opt/ivy/engine. Create the directory and change
the owner to your current user:

cd /opt
sudo mkdir ivy
sudo chown myuser:myuser ivy

Replace myuser with the name of your current user.

Instead of using your current user we suggest that on a productive system you use a special user called ivy. First, create
a new user and group called ivy. Then, change the owner of the folder ivy to the user ivy. After that, login as user ivy
and work with the new user.

sudo mkdir ivy
adduser ivy
...
sudo chown ivy:ivy ivy
ls -al
...
drwxr-xr-x 3 ivy ivy 4096 Sep 15 11:26 ivy
...
login ivy
...

Download the latest engine:

cd ivy
mkdir engine
cd engine
wget https://developer.axonivy.com/permalink/latest/axonivy-engine.zip -O engine.zip

To install Axon.ivy Engine simply unzip the downloaded file AxonIvyEngine*.zip into a new AxonIvyEngine* folder:

unzip engine.zip -d latest
rm engine.zip
cd latest

The most important folders in the Axon.ivy Engine installation folder are:

• the bin folder which contains all the executables.

• the configuration folder which contains the configuration files.

• the deploy folder which is used to deploy Axon.ivy projects.

Start the Engine
Start the Axon.ivy Engine by navigation to the bin folder and executing the AxonIvyEngine binary:

cd bin
./AxonIvyEngine

This will start the Axon.ivy Engine as a user process. On the last lines of the output a URL is displayed:

[100%] Service ProcessModelVersion Portal/AxonIvyExpress$1 started [0ms]
Go to http://yourservername:8080/ivy to see the info page of Axon.ivy Engine.
Axon.ivy Engine is running and ready to serve. [9375ms]

Getting Started

26

Type 'shutdown' and confirm with ENTER to stop the running engine instance

Copy this URL. On your client machine open a web browser and navigate to that URL. This will display the Axon.ivy Engine
main page.

Normally, you want to run Axon.ivy Engine as a daemon process and not as a user process. You can register and manage
the Axon.ivy Engine daemon using systemd.

Use the Engine
The main page of the Axon.ivy Engine looks like this:

The Axon.ivy Engine is running in Demo Mode. This is because you did not install a valid license yet nor did you configure
a system database. Note, that everything that you do with the Axon.ivy Engine running in Demo Mode is lost when you shut
down the engine. However, you can use the engine also in Demo Mode and tryout the pre-installed Portal application by
clicking on the Portal Home link. To login use one of the predefined demo users: demo, guest or admin. The passwords of
the demo users are equal to the user names (E.g. demo for the demo user). Login as demo user and try to create a TODO
task for the guest user using the Axon.ivy Selfservice process:

Getting Started

27

Configure the TODO task as follows:

Start the workflow by pressing the Start Workflow button. After that, logout, then login again as guest user. On the task
list, you now see the new TODO task that you created before. Try to work on the task by clicking on the arrow located on
the right side of the task:

Getting Started

28

Go ahead and play around with the Selfservice process. Try out different types of tasks.

In Axon.ivy a task is a piece of work (a part of a process) that is assigned to a user or role. A user to whom a task is
assigned or who has the role to which a task is assigned can work on the task. When a user works on a task the task
disappears from the task list of other users who might also able to work on the task. This means only one user can really
work on a task at the same time. In a process, it is possible to define parallel tasks. Therefore, it is possible that two or
more users work parallel on different tasks of the same process instance. In Axon.ivy a process instance is called a case.

Configure the Engine
Now, let's configure the Axon.ivy Engine with a license and system database.

To start with that you must first request a valid Axon.ivy Engine license. Either you get a license for your productive system
through one of our sales personal or contact our support for time limited tryout licenses. If you do not have a license you can
skip this section and continue with the next section.

Moreover, you need to have a supported database server up and running with a database user that has the rights to create new
databases. The configuration and creation of the system database differs a little bit depending on the database system you
use. We will use a PostgreSQL database server.

Shutdown the Axon.ivy Engine first by typing shutdown and Y:

...
Go to http://ivy1:8080/ivy to see the info page of Axon.ivy Engine.
Axon.ivy Engine is running and ready to serve. [11596ms]
Type 'shutdown' and confirm with ENTER to stop the running engine instance
shutdown
Should 'Axon.ivy Engine' be stopped? ([Y]es / [N]o): Y

Getting Started

29

Stopping Axon.ivy Engine ...
[0%] Stopping Server
...

Let's install the license. You can do this by simple copy the license *.lic file into the configuration folder:

cp ~/license.lic /opt/ivy/engine/latest/configuration

To configure the system database, use the config-db command of the EngineConfigCli tool. Replace yourdatabasserver
with the name of the host where your PostgreSQL server is running. Replace dbuser and password with the credentials of a
database user that has the rights to create a new database on the database server.

./EngineConfigCli config-db org.postgresql.Driver \
jdbc:postgresql://yourdatabaseserver:5432/AxonIvySystemDatabase \
dbuser password

Now, let's create the system database with the create-db command:

./EngineConfigCli create-db

The system database is used by Axon.ivy Engine to store configurations, users, roles, process instances, tasks and
process data.

Next, define an administrator by modifying the “ivy.yaml” file of the configuration directory:

sample ivy.yaml which defines a single administrative account:
Administrators:
 admin:
 Password: 1234
 Email: sudo@acme.com

Administrators can administrate the Axon.ivy Engine. For example, they can add or remove users, assign user to roles,
enable or disable applications, etc.

Therefore, you need at least one administrator so that you can later administrate the Axon.ivy Engine.

The Email address of administrators are used to send mail notifications if license problems occur.

Lastly, disable the AJP protocol connector of the Axon.ivy Engine internal web server in the “ivy.webserver.yaml” file of
the configuration directory:

sample ivy.yaml which disables AJP, as no front-end webserver is in charge:
Connector:
 AJP:
 Enabled: false

The Axon.ivy Engine internal web server provides connectors for the following protocols:

HTTP Protocol used by web browser to communicate with a web server. This protocol is not secure since the
communication is not encrypted. Axon.ivy Engine uses port 8080 by default.

HTTPS Like HTTP but secure. It uses TLS to encrypt the communication between the web browser and server.
Axon.ivy Engine uses port 8443 by default.

AJP This protocol is used to communicate with an Microsoft IIS or Apache httpd frontend server. AJP=Apache
Jakarta Protocol. Axon.ivy Engine uses port 8009 by default.

Have a look at the “ivy.webserver.yaml” to see what other parts of the webserver and its connectors can be adjusted
for your needs.

Getting Started

30

Now, start the Axon.ivy Engine again as background process.

nohup ./AxonIvyEngine &

Note, that the HTTP port of the Axon.ivy Engine may have changed. If you did change the http settings! So open again a
web browser and navigate to http://yourservername:yourportnumber/ivy. Note, that the header with the demo mode message
is gone. You now have a production ready Axon.ivy Engine.

Deploy an Axon.ivy project to the Engine
Let's deploy an Axon.ivy project to the Axon.ivy Engine. We use demos that are shipped with the Axon.ivy Designer.

cd /opt/ivy/engine/deploy/Portal
wget https://developer.axonivy.com/permalink/latest/axonivy-designer-linux.zip -O designer.zip
unzip -j designer.zip applications/samples/WorkflowDemos.iar applications/samples/ConnectivityDemos.iar applications/samples/HtmlDialogDemos.iar
rm designer.zip

An Axon.ivy Project is normally stored in a folder. However, you can also deploy *.iar files. An *.iar file is more or
less a packed (zipped) Axon.ivy Project folder.

You can monitor the deployment with:

tail -f WorkflowDemos.iar.deploymentLog

As soon as the deployment is finished the iar-files will be postfixed with .deployed. In case of an error the postfix
is .notDeployed. E.g. WorkflowDemos.iar.deployed.

An Axon.ivy Engine can manage multiple applications. Each application has its own user and task management. A user
of one application can only work in that application and not in another application. A task of one application will never
be visible in another application. Therefore, applications can be used to build multi tenancy or stages (DEV, Q&A,
PROD) without to install multiple Axon.ivy Engines.

Warning

There is a default Portal application which should only be used for demo purpose. Create always a new
application for the production environment, because the shipped Portal application has a special lifecycle and
no real migration path.

Refresh the main page of the Axon.ivy Engine. There is now a new section called WorkflowDemos available with new links
available to start processes.

Congratulations you have installed and configured your first Axon.ivy Engine and also deployed your first Axon.ivy project.
If you are interested in how to do the same but with UI tools read the previous section. In the next chapter, you will learn the
main concept of the Axon.ivy Engine and the details of how to configure, administrate and monitor it.

http://localhost:8080/ivy

Getting Started

31

Docker
We provide an image for demo and testing purpose on Docker Hub: https://hub.docker.com/r/axonivy/axonivy-engine/

This image can be started with the following command:

docker run -p 8080:8080 axonivy/axonivy-engine

After startup, the engine can be accessed under the following url: http://localhost:8080/ivy

On GitHub you can find some examples how to use this image: https://github.com/ivy-samples/docker-samples

Warning

We strongly recommend to build an own image for production systems. Because the container should be always
up to date with the newest security patches of the underlying system.

Take a closer look at the following Dockerfile if you need to build an own image:

FROM openjdk:8-jre-slim-stretch
LABEL maintainer="Reto Weiss <reto.weiss@axonivy.com>"

ARG IVY_ENGINE_DOWNLOAD_URL
ARG IVY_PACKAGE_NAME=axonivy-engine-7x
ARG IVY_HOME=/usr/lib/axonivy-engine

RUN apt-get update && \
 apt-get install -y wget && \
\
 useradd --uid 1000 --user-group --no-create-home ivy && \
\
 wget ${IVY_ENGINE_DOWNLOAD_URL} -O /tmp/${IVY_PACKAGE_NAME}.deb && \
 dpkg -i /tmp/${IVY_PACKAGE_NAME}.deb && \
 ln -s /usr/lib/${IVY_PACKAGE_NAME} ${IVY_HOME} && \
 ln -s /var/lib/${IVY_PACKAGE_NAME} /var/lib/axonivy-engine && \
 ln -s /etc/${IVY_PACKAGE_NAME} /etc/axonivy-engine && \
 rm -f /tmp/${IVY_PACKAGE_NAME}.deb && \
\
 rm -rf ${IVY_HOME}/system/applications/System/EngineConfigUi && \
 rm -rf /usr/share/doc/${IVY_PACKAGE_NAME} && \
 rm -rf /var/lib/apt/lists/*

ADD --chown=ivy:ivy ./docker-entrypoint.sh ${IVY_HOME}/bin/docker-entrypoint.sh
RUN chmod u+x ${IVY_HOME}/bin/docker-entrypoint.sh

WORKDIR ${IVY_HOME}
USER 1000
EXPOSE 8080
ENTRYPOINT ["/usr/lib/axonivy-engine/bin/docker-entrypoint.sh"]

The following snippet shows the docker-entrypoint.sh:

#!/bin/bash
set -e

amountOfLicenceFiles=$(find /etc/axonivy-engine/*.lic -maxdepth 1 -type f|wc -l)
if [$amountOfLicenceFiles -gt 1]; then
 bin/EngineConfigCli wait-for-db-server
 bin/EngineConfigCli create-db
else
 # only demo licence available
 echo "if you don't want to run in demo mode, install a licence file under /etc/axonivy-engine/*.lic"

https://hub.docker.com/r/axonivy/axonivy-engine/
https://github.com/ivy-samples/docker-samples

Getting Started

32

fi

exec bin/AxonIvyEngine

33

Chapter 3. Installation
Upgrading from an older version

Warning

Upgrading from Xpert.ivy Server 3.x to Axon.ivy Engine 5.x and later is not supported.

If you upgrade to a new update release within the same Long Term Support (LTS) or Leading Edge (LE) version (e.g. 7.0.3 to
7.0.4) then follow the steps in the section Preparation and Upgrade. A project migration and system database conversion are
normally not needed if not explicit communicated otherwise in the Migration Notes. Therefore, you can skip section Project
Migration and steps 2 and 4 in the section Upgrade.

Preparation

Warning

Before upgrading of an Axon.ivy Engine read the Migration Notes document of the new version. This document
will tell you exactly what has changed since the last version and will list any additional steps to be undertaken,
which might not be described here.

1. Install the new Axon.ivy Engine version to a new installation directory (See section Install Axon.ivy Engine).

2. Read the Migration Notes document of the new version.

3. If necessary (according to the Migration Notes), request a new licence (see section Installing a Licence).

4. Back up the system database and the application file directories of the old installation.

5. Copy the file serverconfig.xml plus all YAML and properties files from the configuration directory of the old installation
directory to the configuration directory of the new installation.

6. Unless a new licence is required (see 3.) you should also copy the old licence file to the new installation.

7. Modifications on any other configuration files located in the configuration, elasticsearch/config, webapps/ivy/WEB-INF
or webapps/ivy/META-INF directories of the old installation may be ported over to the corresponding files in the new
installation, if required. To see what has been changed, we recommend the usage of some diff tool to compare the
individual config files of old and new installation.

8. If you have installed additional extension plugins into the dropins directory then copy them to the dropins directory of
the new installation directory if they are compatible with the new Engine version. For those which are not compatible
try to get new compatible versions and install them.

Project Migration
Project migration is only necessary if mentioned in the Migration Notes. If migration is required, all projects deployed
to process model versions in state PREPARED, RELEASED, DEPRECATED and ARCHIVED must be converted. The
following steps are necessary for every process model version:

1. Copy the project from the process model version file directory on the engine to a local directory on your developer
machine.

2. Import the project into your Designer workspace.

3. Migrate the project according the Migration Notes of the Designer. Usually this is achieved by invoking the project
conversion action on each project (see Designer Guide for more information). Some manual adaptions may be necessary.

Installation

34

4. Test the migrated project in the Designer.

All migrated projects must be redeployed to the new, upgraded engine version (see next section).

Upgrade
1. Stop the engine of the old version (See section Start / Stop Engine).

2. Either convert the system database with the “Engine Configuration UI” (See “System Database”). Or set autoConvert
property to true in the “ivy.yaml” of the configuration directory.

3. Start the engine of the new version (see section Start / Stop Engine).

4. Redeploy all converted/migrated Axon.ivy projects using the Axon.ivy Engine Administration (see section Deploying
a Project).

5. You may now delete the old engine installation directory, unless the following warning applies to your installation:

Warning

Please note that the new, upgraded engine installation will still refer to the application file directories that were
used by the old installation. As a consequence, you must never delete the directory of an old installation, if it
contains application file directories (you can check the file directory by displaying the application information
inside the Axon.ivy Engine Administration). If the application file directories of your installation are stored
elsewhere, then the deletion of the old engine installation will not cause any problems.

Standard Edition Installation
It is recommended to read the Introduction chapter before installing an Axon.ivy Engine. The following list shows the
necessary steps that are required to install and run an Axon.ivy Engine:

1. Gather all the information you need:

• The server platform the engine will be installed on.

• The database system used to host the system database.

• Order a licence file for your installation. You need to know the host name of the machine you want to install the
Axon.ivy Engine on. More information about the licence can be found in the section Install a Licence of the Installation
chapter.

• If an integration with a web server is planned, then get all the necessary configuration information of the web server.

• If an integration with an external security system is planned, then get all the necessary configuration information of
the external security system (e.g. Active Directory or Novell eDirectory).

• Ivy uses a bundled Elasticsearch server to search through Business Data. If the use of an external Elasticsearch server
is planned, then get the necessary configuration information for it. When running an Axon.ivy Engine Enterprise
Edition the use of an external Elasticsearch server is mandatory. See the Elasticsearch section in the “ivy.yaml” of
the configuration directory.

2. Install all required operating systems, web servers and database systems.

3. Install the Axon.ivy Engine

4. Install your licence file

5. Configure the Axon.ivy Engine

6. Start the Axon.ivy Engine and test if it is running.

Installation

35

If everything is fine so far, you can perform the following optional configuration steps:

1. Run the Axon.ivy Engine as Service which runs automatically after a reboot.

2. Integrate Axon.ivy Engine into web servers if necessary.

3. Deploy workflow applications.

Demo Mode
Axon.ivy Engine offers a demo mode for demonstration purposes. The demo mode allows you to install and start the Axon.ivy
Engine without configuration and without a productive licence. To install and start an Axon.ivy Engine in demo mode simply
execute the steps 3 and 6 from the list above.

Warning

The Axon.ivy Engine uses a memory database as system database in demo mode. This means that everything you
configure and all cases that are created by any sessions in demo mode are lost when you shut down the engine.

Tip

In demo mode you can login to the Engine Administration using with the predefined user admin and password
admin.

Enterprise Edition Installation
The installation process of an Axon.ivy Engine Enterprise Edition node is very similar to the standard installation process. To
save time you can copy the configuration from the first node you have installed to other nodes. See the next chapters to learn
how to install the first node, and how to proceed to install further nodes either on different machines or on the same machine.

Once you've installed all Axon.ivy Engine Enterprise Edition nodes you may want to integrate them into a web server that
will act as single frontend. The web server can be configured to work as a load balancer that distributes the incoming requests
evenly to the Axon.ivy Engine Enterprise Edition nodes. Consult the chapter Web Server Integration for more information.

Installation of the first engine node
Follow the standard installation process to install the first Axon.ivy Engine Enterprise Edition node.

For an Axon.ivy Engine Enterprise Edition installation an external Elasticsearch server installation is mandatory. See
Elasticsearch installation for more information.

At point 4 you must make sure that you install an Axon.ivy Enterprise Edition licence.

At point 5 an additional Cluster configuration tab will be displayed in the “Cluster ”. Inside this tab use the Add local node
button to add the new node to the list of nodes of the Axon.ivy Engine Enterprise Edition.

Installation of another engine node on a different machine
To install further Axon.ivy Engine Enterprise Edition nodes on other machines proceed as follows:

1. Install the Axon.ivy Engine

2. Copy the configuration directory inside the installation directory of the first Axon.ivy Engine Enterprise Edition node to
the installation directory of the currently installing node. Overwriting all existing files.

3. Replace the licence file from the first Axon.ivy Engine Enterprise Edition node with the Axon.ivy Enterprise Edition
licence for this node in the configuration directory.

Installation

36

4. Start the “Engine Configuration UI” program. The system database and administrators and web server tab should display
the values you have configured on the first node. Change to the Cluster tab and use the Add local node button to add the
node to the list of nodes of the Axon.ivy Engine Enterprise Edition. Save your changes.

5. Start the Axon.ivy Engine Enterprise Edition node and test if it is running.

Installation of another engine node on the same machine
To install further engine nodes on the same machine where a node is already installed proceed as follows:

1. Install the Axon.ivy Engine

2. Copy the configuration directory inside the installation directory of the first engine node to the installation directory of
the currently installing node. Overwrite all existing files.

3. Replace the licence file from the first engine node with the Axon.ivy Enterprise Edition licence for this node in the
configuration directory.

Note

Every cluster node needs its own licence file even if nodes run on the same machine.

4. Start the “Engine Configuration UI” program. The system database and administrators tab should display the values you
have configured for the first node.

Change to the WebServer tab and specify different port numbers than those you have specified for the other nodes on
this machine.

Change to the Cluster tab and use the Add local node button to add the node to the list of nodes of the Axon.ivy Engine
Enterprise Edition. Save your changes.

5. Start the Axon.ivy Engine Enterprise Edition node and test if it is running.

Install Axon.ivy Engine
To install the Axon.ivy Engine extract the correct zip file for your platform to the directory where you want to install the
Axon.ivy Engine.

For Debian based operating systems there is a convenient installer package available.

The following platforms are supported:

CPU Architecture Operation System Installation File

Intel x64 Debian (Ubuntu/
Mint)

axonivy-engine-V_X.Y.Z.deb

Intel x64 Windows AxonIvyEngineX.Y.Z_Windows_x64.zip

Intel x64 Linux and
Windows*

AxonIvyEngineX.Y.Z_All_x64.zip

Intel x64 Linux and
Windows*

AxonIvyEngineX.Y.Z_Slim_All_x64.zip

Table 3.1. Supported Axon.ivy Engine Platforms

* The 'All' and 'Slim_All' engines are delivered with launchers for Linux and Windows, but without a JRE. To use the slim
engine set up the IVY_JAVA_HOME environment variable pointing to a supported x64 Oracle JRE, or the JAVA_HOME
environment variable pointing to a supported x64 Oracle JDK. The Slim engine comes without projects like the Portal.

https://developer.axonivy.com/permalink/latest/axonivy-engine.deb
https://developer.axonivy.com/permalink/latest/axonivy-engine-windows.zip
https://developer.axonivy.com/permalink/latest/axonivy-engine.zip
https://developer.axonivy.com/permalink/latest/axonivy-engine-slim.zip

Installation

37

Note

Note, that the installation procedure implies sufficient administration and access rights on the system. For
example the access to drive C: on a Windows Server 2008 system is very restrictive that you might install the
programs on drive D: instead.

Installed Files and Directories
After the installation the following files and folders are located in the Axon.ivy Engine installation folder:

Folder or File Name Description

bin/ Contains programs to start and configure the Axon.ivy Engine

clientlib/ Contains libraries that are deployed to the client machines

signed/linux/ Linux specific libraries

signed/linux_native/ Native Linux libraries

signed/windows/ Windows specific libraries

signed/windows_native/ Native Windows libraries

configuration/ Contains the Axon.ivy Engine configuration data

defaults/ Documentation and templates for ivy.yaml files

demo.lic Demo licence file

“ivy.yaml” Main configuration file of the Axon.ivy Engine. Configures environments
such as the system database, e-mail servers, administrators and more.

“ivy.cache.properties” System database cache configurations

keystore.jks Keystore with the default signature of the Axon.ivy Engine (for https/ssl)

truststore.jks Empty truststore can be used to add trusted server certificate for SSL
connection clients

“log4jconfig.xml” Logging configuration

servercontrolcenter.configuration Control Center configuration

doc/

html/ Axon.ivy Engine Guide as HTML documentations

pdf/ Axon.ivy Engine Guide as PDF document

newAndNoteworthy/ Contains new and noteworthy features of the latest Axon.ivy Engine and
Designer releases

migrationNotes/ Contains migration notes of the latest Axon.ivy Engine and Designer releases

dropins/ Third party extension libraries that contribute to the Axon.ivy runtime

elasticsearch/ Bundled Elasticsearch server

jre/ Java Runtime Environment for Axon.ivy Engine

logs/ Contains the log files

misc/

apache Files to integrate Axon.ivy into an Apache web server

iis Files to integrate Axon.ivy into a Microsoft Internet Information Server (IIS)

visualvm The Axon.ivy VisualVM plugin file

system/ The OSGi system

applications/ The system provided applications

configuration/ The OSGi configuration

features/ Installed OSGi features

Installation

38

Folder or File Name Description

lib/boot/ OSGi boot classpath libraries

plugins/ Installed OSGi plugins. Basically all default or automatically installed java
libraries of the Axon.ivy Engine

projects/ Contains deployable Axon.ivy projects

webapps/

ivy/ Contains the Axon.ivy Engine web interface

ivy/info/ Contains the info web pages

ivy/WEB-INF/ Contains the “web.xml” file

ivy/META-INF/ Contains the “context.xml” file

ivy/wf/ Contains the workflow web interface

work/ Contains temporary files that are created and used by the Axon.ivy Engine

NewAndNoteworthy.html Overview / entry point for list of new and noteworthy features in this release

MigrationNotes.html Overview / entry point for migration of last to current release

Readme.html Important information about this engine release

ReleaseNotes.txt Release notes with bug fixes and new features

Table 3.2. Installed Files and Directories

Windows Programs

The bin folder of a windows installation contains the following native dynamic link libraries and executable files:

File Description

Example.ilc Example of an ivy launch control file. For more information see section “Windows
Program Launcher Configuration” .

JavaWindowsServiceHandler.dll Library that contains native methods to register, unregister, configure, start and
stop windows services

JVMLauncher.dll Library containing code to launch the Java virtual machine.

NTEventLogAppender.dll Library that implements native methods to log into the windows event log (32 Bit
only).

ControlCenter.exe Program that allows to configure, start and stop the Axon.ivy Engine. It also permits
to configure the Windows services. For more information see section “ Control
Center”.

ControlCenterC.exe Same as ControlCenter.exe but additionally logs any output to a console window.

AxonIvyEngine.exe Starts the Axon.ivy Engine. For more information see section “AxonIvyEngine”.

AxonIvyEngineC.exe Same as AxonIvyEngine.exe but additionally logs any output to a console window.

AxonIvyEngineConfig.exe Program to configure the Axon.ivy Engine. For more information see section
“Engine Configuration UI”.

AxonIvyEngineConfigC.exe Same as AxonIvyEngineConfig.exe but additionally logs any output to a console
window.

AxonIvyEngineService.exe Executable of the Windows service. For more information see section “Windows
Service”.

Table 3.3. Windows Programs

Linux Programs

The bin folder of a Linux installation contains the following script files:

Installation

39

File Description

AxonIvyEngine Starts the Axon.ivy Engine. For more information see section “AxonIvyEngine”.

“AxonIvyEngine.conf” Java virtual machine configuration (Xms, Xmx, JMX, ...) for the Engine.

AxonIvyEngineConfig Program to configure the Axon.ivy Engine. For more information see section
“Engine Configuration UI”.

AxonIvyEngine.service Template systemd script of the Linux service. It will be copied to /etc/systemd/
system/ by running InstallService.sh.

control.conf Java virtual machine configuration (Xms, Xmx, JMX, ...) for the control tools
(ControlCenter & AxonIvyEngineConfig)

ControlCenter Program that allows to configure, start and stop the Axon.ivy Engine. For more
information see section “ Control Center”.

InstallService.sh Script to install the Axon.ivy Engine as a daemon. For more information see section
“Linux Service (systemd)”.

launcher.sh Helper script to launch a Java program.

Table 3.4. Linux Programs

Installing a Licence
By default a demo licence is installed that allows you to run the Axon.ivy Engine in demo mode. You have to install a licence
in order to run Axon.ivy Engine in a production environment.

Note

The licence file contains the name of the host where the engine is installed on. The licence will only work if the
name of the machine exactly matches the name stored in the licence file.

To install a licence file follow the steps below:

1. Copy the licence file *.lic to the directory configuration/.

2. Change the extension of your old licence files to anything, but *.lic (e.g. from foo_bar_another_licence.lic to
foo_bar_another_licence.lic.old).

Tip

You may leave demo.lic in the configuration folder, because this licence is taken only if no other licence files
are found.

System Database
The Axon.ivy Engine system database is used by the server to store configuration, security, content and workflow information.
See chapter Configuration to find out how you can create and configure Axon.ivy Engine system databases. Axon.ivy Engine
supports the following database systems to host the system database:

• MySQL

• MariaDB

• Oracle

• Microsoft SQL Server

• Postgre SQL

Installation

40

Password Encryption
Passwords are stored encrypted in the system database using state of the art encryption algorithms. More information can be
found in the chapter System Database Encryption.

Character set and collation
All characters in databases are encoded with a specific charset (e.g. utf8, latin1, cp1257). Lastly it defines which kind of
characters can be stored at all.

The collation is a set of rules that defines how the database management system compares and orders the data (e.g.
utf8_unicode_ci, latin2_general_ci). Common abbreviations in the name of the collations are the following:

• ci = case insensitive

• cs = case sensitive

• ai = accent insensitive

• as = accent sensitive

As well as the character set the collation can be defined mostly on several levels: server, database, table or column. Everything
about this subject is very dependent on the actual database management system.

Support case insensitive searches

If a case insensitive search is required, it must be guaranteed that the affected column has a case insensitive collation.

• 1. Check character set & collation of the column

• 2. Change character set & collation if necessary

Look at the specific chapters for your database below.

MySQL

Information

MySQL is an Open Source database. For more information go to www.mysql.com. You can download the latest mysql JDBC
driver (Connector/J) from www.mysql.com.

Configuration

The following table explains the fields you have to configure on System Database tab in the Axon.ivy Engine Configuration
program:

Field Name Value(s) Description

Database MySQL The database system to use.

Driver MySQL The database JDBC driver to use.

Host localhost, testdbserv, ... The name of the host where the database
system is running.

Port 3306, 3307, 3308, ... The IP port where the database system is
listening for requests.

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the Axon.ivy Engine system
database.

http://www.mysql.com
http://www.mysql.com

Installation

41

Field Name Value(s) Description

User Name root, admin, AxonIvy, ... The name of the database user who is
used to connect to the database system.

Password **** The password of the database user who
is used to connect to the database system.

Table 3.5. MySQL Configuration

Creation

The following table explains the additional creation parameters you have to configure on System Database tab in the Axon.ivy
Engine Configuration program, if you want to create a new system database on a MySQL database system:

Field Name Value(s) Description

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the database to create

Engine Type InnoDb The type of the MySQL database engine
to use. At the moment only InnoDb is
possible.

Table 3.6. MySQL Creation Parameter

Driver

The following table shows information about the JDBC driver that Axon.ivy Engine uses to connect to MySQL database
systems:

JDBC Driver Name com.mysql.jdbc.Driver

JDBC Connection URL Format jdbc:mysql://<host>[:<port>]/<database name>

Table 3.7. MySQL Driver

Character set & collation

If you want to check the collation of a specified column you can use the following query:

SELECT character_set_name, collation_name FROM information_schema.columns WHERE
table_schema = "AXON_IVY_SYSTEM_DATABASE" AND table_name = "iwa_case" AND column_name
= "name"

If you need to change the collation look at the official MySQL reference for all supported character sets and collations. The
simplest way is to use a case insensitive collation of the current character set. The following code will apply a new collation.

ALTER TABLE iwa_case MODIFY name VARCHAR(200) CHARACTER SET utf8 COLLATE
utf8_general_ci;

You can find more information about modifying the column in the MySQL reference.

If the Axon.ivy Engine Configuration creates a new database, the following parameters will be automatically applied. If you
want to use different charset or collation create an empty database manually with your configuration and then use the Axon.ivy
Engine Configuration to create the tables, views and indexes in that database.

Parameter Value

Charset utf8

http://dev.mysql.com/doc/refman/5.7/en/charset-charsets.html
http://dev.mysql.com/doc/refman/5.7/en/charset-conversion.html

Installation

42

Parameter Value

Collation utf8_unicode_ci

Table 3.8. MySQL Default Database Configuration

MariaDB

Information

MariaDB is an Open Source database. For more information go to mariadb.org. MariaDB is a drop-in replacement for MySQL.
The documentation for MySQL often applies to MariaDB as well.

Configuration

The following table explains the fields you have to configure on System Database tab in the Axon.ivy Engine Configuration
program:

Field Name Value(s) Description

Database MariaDB The database system to use.

Driver MariaDB The database JDBC driver to use.

Host localhost, testdbserv, ... The name of the host where the database
system is running.

Port 3306, 3307, 3308, ... The IP port where the database system is
listening for requests.

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the Axon.ivy Engine system
database.

User Name root, admin, AxonIvy, ... The name of the database user who is
used to connect to the database system.

Password **** The password of the database user who
is used to connect to the database system.

Table 3.9. MariaDB Configuration

Creation

The following table explains the additional creation parameters you have to configure on System Database tab in the Axon.ivy
Engine Configuration program, if you want to create a new system database on a MariaDB database system:

Field Name Value(s) Description

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the database to create

Engine Type InnoDb The type of the MariaDB database
engine to use. At the moment only
InnoDb is possible.

Table 3.10. MariaDB Creation Parameter

Driver

The following table shows information about the JDBC driver that Axon.ivy Engine uses to connect to MariaDB database
systems:

https://mariadb.org

Installation

43

JDBC Driver Name org.mariadb.jdbc.Driver

JDBC Connection URL Format jdbc:mariadb://<host>[:<port>]/<database name>

Table 3.11. MariaDB Driver

Character set & collation

If you want to check the collation of a specified column you can use the following query:

SELECT character_set_name, collation_name FROM information_schema.columns WHERE
table_schema = "AXONIVYSYSTEMDATABASE" AND table_name = "iwa_case" AND column_name
= "name"

If you need to change the collation look at the official MariaDB reference for all supported character sets and collations. The
simplest way is to use a case insensitive collation of the current character set. The following code will apply a new collation.

ALTER TABLE iwa_case MODIFY name VARCHAR(200) CHARACTER SET utf8 COLLATE
utf8_general_ci;

You can find more information about modifying the column in the MariaDB reference.

If the Axon.ivy Engine Configuration creates a new database, the following parameters will be automatically applied. If you
want to use different charset or collation create an empty database manually with your configuration and then use the Axon.ivy
Engine Configuration to create the tables, views and indexes in that database.

Parameter Value

Charset utf8

Collation utf8_unicode_ci

Table 3.12. MariaDB Default Database Configuration

Oracle

Information

Oracle database is a database management system from the Oracle Corporation. For more information go to www.oracle.com

Configuration

The following table explains the fields you have to configure on the System Database tab in the Axon.ivy Engine Configuration
program:

Field Name Value(s) Description

Database Oracle The database system to use.

Driver Oracle Thin, Oracle Oci The database JDBC driver to use. Either
Thin or OCI driver.

Host localhost, testdbserv, ... The name of the host where the database
system is running.

Port 1521, 1522, 1523, ... The IP port where the database system is
listening for requests.

Oracle Service ID (SID) oracle, db, ... The identifier of the oracle service.

User Name root, admin, AxonIvy, ... The name of the database user who is
used to connect to the database system.

https://mariadb.com/kb/en/library/supported-character-sets-and-collations/
https://mariadb.com/kb/en/library/setting-character-sets-and-collations/
http://www.oracle.com

Installation

44

Field Name Value(s) Description

Password **** The password of the database user who
is used to connect to the database system.

Table 3.13. Oracle Configuration

Tip

On all (reused) oracle database connections the maximum number of open cursors is set to 1000, independently
from the default setting that may be set on the database itself. Those cursors are needed to cache all prepared
statements and also for PL/SQL blocks.

It may turn out that the number of open cursors is exceeded, which is indicated by an error message similar
to the following:

ch.ivyteam.ivy.persistence.PersistencyException: java.sql.SQLException:
ORA-00604: error occurred at recursive SQL level 1
ORA-01000: maximum open cursors exceeded

If this should happen, then you may customize (and increase) the number of open cursors per connection with
the Java system property ch.ivyteam.ivy.persistence.db.oracle.MaxOpenCursors. It can be
set in the “Launch Configuration”.

Creation

Note

With Oracle database the Axon.ivy Engine Configuration program will not create a new database instance for
Axon.ivy Engine instead it will create only the user/schema and the tables into a given tablespace.

Before you can create the system database tables on a Oracle Database you have to do the following steps:

1. You may want to create a new Oracle database where the Axon.ivy Engine System Database is located. This is optional
you can use an already existing Oracle database.

2. Create a new user (e.g. AxonIvy). Grant all necessary permissions to the user so that he can create and alter tables,
indexes, sequences. Of course the user must be able to insert, update, delete and select data from the tables of the system
database. This is optional you can use an already existing Oracle user or let the Axon.ivy Engine create one for you with
the Axon.ivy Engine Configuration.

3. You may want to create a new tablespace (e.g. AxonIvy) where the Axon.ivy Engine System Database can store the table
data. This is optional you can use an already existing tablespace.

Warning

Be sure that the configuration of the database connection uses the new database and the Oracle Service ID
reflecting the database you want to create the system database tables in.

The following table explains the additional creation parameters you have to configure on the System Database tab in the
Axon.ivy Engine Configuration program if you want to create a new system database on Oracle database system:

Field Name Value(s) Description

Tablespace AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the tablespace where the
system database tables will store their
data in.

User AxonIvy, ... The name of the user which will be
created if she is not already existing.

Installation

45

Field Name Value(s) Description

Tables, indexes and views are created in
the schema of this user.

Password *** The password for the given user.

Table 3.14. Oracle Creation Parameter

Driver

The following table shows information about the JDBC driver Axon.ivy Engine uses to connect to Oracle database systems:

JDBC Driver Name oracle.jdbc.OracleDriver

JDBC Connection URL Format jdbc:oracle:thin:@<host>:<port>:<service id>

Table 3.15. Oracle Driver

Character set & collation

The character set is defined with the CREATE DATABASE statement which is part of the customer configuration (look
at creation). We recommend to use AL32UTF8 (unicode) or at least WE8ISO8859P1, which supports Western European
languages. By the use of AL32UTF8 all text fields like VARCHAR or CHAR supports unicode characters.

Oracle databases works with session parameters for sorting and comparing data. The concept is called Linguistic Sorting and
Matching. In the Oracle Database Manager you can configure the initialization parameters. For case insensitive sorting and
comparing you can set NLS_SORT to AMERICAN (select an appropriate language) and NLS_COMP to LINGUISTIC. At the
moment, you can't override the NLS_LANGUAGE and NLS_TERRITORY which is set to AMERICAN.

Microsoft SQL Server

Information

Microsoft SQL Server is a database system from Microsoft. For more information go to www.microsoft.com. We support
two different JDBC Drivers for Microsoft SQL Server. First, the official JDBC Driver from Microsoft that provides support
for the latest SQL Server features like high availability with multi subnet fail-over. Second, the matured and long-time used
jTDS JDBC Driver.

Configuration

The following table explains the fields you have to configure on the System Database tab in the Axon.ivy Engine Configuration
program:

Field Name Value(s) Description

Database Microsoft SQL Server The database system to use.

Driver jTDS or Microsoft SQL Server The database JDBC driver to use.

Host localhost, testdbserv, ... The name of the host where the database
system is running.

Port 1433, 1434, 1435, ... The IP port where the database system is
listening for requests.

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the Axon.ivy Engine system
database .

User Name sa, root, admin, AxonIvy, ... The name of the database user who is
used to connect to the database system.

https://docs.oracle.com/database/121/NLSPG/ch5lingsort.htm#NLSPG005.
https://docs.oracle.com/database/121/NLSPG/ch5lingsort.htm#NLSPG005.
http://www.microsoft.com

Installation

46

Field Name Value(s) Description

Password **** The password of the database user who
is used to connect to the database system.

Table 3.16. Microsoft SQL Server Configuration

Important

If you want to connect to an existing instance of a MS SQL Server you have to configure an additional
connection property that is called instance/instanceName containing the name of the corresponding
database instance.

Creation

The following table explains the additional creation parameters you have to configure on the System Database tab in the
Axon.ivy Engine Configuration program if you want to create a new system database on Microsoft SQL Server database
system:

Field Name Value(s) Description

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the database to create

Table 3.17. Microsoft SQL Server Creation Parameter

Driver

The following table shows information about the JDBC drivers Axon.ivy Engine uses to connect to Microsoft SQL Server
database systems:

Driver Name Connection URL Format Documentation

net.sourceforge.jtds.jdbc.Driver jdbc:jtds:sqlserver://<host>[:<port>]/
<database name>

jTDS JDBC Driver Documentation

com.microsoft.sqlserver.jdbc.SQLServerDriverjdbc:sqlserver://
<host>[:<port>];DatabaseName=<database
name>

Microsoft SQL Server JDBC Driver
Documentation

Table 3.18. Microsoft SQL Server Driver

Character set & collation

MSSQL Server supports different (one byte-) character sets with the COLLATE parameter. If you need a unicode character
set you have to modify the text fields to type NVARCHAR, NCHAR or NTEXT. First create a new column of this type, copy
data from the old column, drop the old column and rename the new column to the old column.

If you want to check the collation of a specific column you can use the following query:

SELECT columns.collation_name FROM information_schema.columns WHERE table_name =
'iwa_case' AND column_name = 'name';

Probably you need to change the collation. Look at the official MSSQL reference for all supported character sets and collations.
The simplest way is to use a case insensitive collation of the current character set. The following code will apply a new
collation.

ALTER TABLE iwa_case ALTER COLUMN name VARCHAR(200) COLLATE Latin1_General_CS_AI;

http://jtds.sourceforge.net/
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://msdn.microsoft.com/en-us/library/ms143726.aspx

Installation

47

If the Axon.ivy Engine Configuration creates a new database, the following parameters will be automatically applied. If you
want to use different collation create an empty database manually with your configuration and then use the Axon.ivy Engine
Configuration to create the tables, views and indexes in that database.

Parameter Value

COLLATE Latin1_General_CI_AI

Table 3.19. Microsoft SQL Server Default Database Configuration

PostgreSQL

Information

PostgreSQL is an Open Source database. For more information go to www.postgresql.org. You can download the latest
PostgreSQL JDBC driver from jdbc.postgresql.org

Configuration

The following table explains the fields you have to configure on the System Database tab in the Axon.ivy Engine Configuration
program:

Field Name Value(s) Description

Database PostgreSQL The database system to use.

Driver PostgreSQL The database JDBC driver to use.

Host localhost, testdbserv, ... The name of the host where the database
system is running.

Port 5432, 5433, 5434, ... The IP port where the database system is
listening for requests.

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the database to use.

User Name sa, root, admin, AxonIvy, ... The name of the database user who is
used to connect to the database system.

Password **** The password of the database user who
is used to connect to the database system.

Table 3.20. PostgreSQL Configuration

Creation

The following table explains the additional creation parameters you have to configure on the System Database tab in the
Axon.ivy Engine Configuration program if you want to create a new system database on PostgreSQL database system:

Field Name Value(s) Description

Database Name AxonIvy, AxonIvyEngine,
AxonIvySystemDatabase, ...

The name of the database to create

Table 3.21. PostgreSQL Creation Parameter

Driver

The following table shows information about the JDBC driver Axon.ivy Engine uses to connect to PostgreSQL database
systems:

http://www.postgresql.org
http://jdbc.postgresql.org

Installation

48

JDBC Driver Name org.postgresql.Driver

JDBC Connection URL Format jdbc:postgresql://<host>[:<port>]/<database system>

Table 3.22. PostgreSQL Driver

Character set & collation

The character set can only be defined by the CREATE DATABASE statement.

If you want to know the collation of a column you can use the following query:

SELECT character_set_name, collation_name FROM information_schema.columns WHERE
table_name = 'iwa_case' and column_name = 'name';

Maybe there is no collation defined, so PostgreSQL won't show you any value. Ask the DBMS for the default value:

SELECT datname, datcollate FROM pg_database;

Propably you need to change the collation. Look at the official PostgreSQL reference for all supported character sets and
collations. Look also at Collation Support and ALTER TABLE for more information about collations in PostgreSQL.

ALTER TABLE iwa_case ALTER COLUMN name varchar(200) COLLATE "de_DE.utf8";

If the Axon.ivy Engine Configuration creates a new database, the following parameters will be automatically applied. If you
want to use different charset or collation create an empty database manually with your configuration and then use the Axon.ivy
Engine Configuration to create the tables, views and indexes in that database.

Parameter Value

ENCODING UTF8

Table 3.23. PostgreSQL Default Database Configuration

https://www.postgresql.org/docs/9.3/static/multibyte.html
https://www.postgresql.org/docs/9.3/static/multibyte.html
https://www.postgresql.org/docs/9.1/static/collation.html
https://www.postgresql.org/docs/9.1/static/sql-altertable.html

49

Chapter 4. Configuration
Engine Configuration

The Axon.ivy engine is configured by files. Most of them are located in the /configuration directory of the engine.

Files
The “ivy.yaml” file contains the most important entries that define the environment and runtime behaviour of the Axon.ivy
engine.

sample ivy.yaml with some often used entries defined
SystemDb:
 Driver: org.mariadb.jdbc.Driver
 Url: jdbc:mariadb://myDbHost:3306/AxonIvySystemDatabase
 UserName: root
 Password: 1234
EMail:
 Server:
 Host: smtp.gmail.com
 Port: 25
Administrators:
 admin:
 Password: 1234
 Email: info@localhost
 devop:
 Password: "${encrypt:4321}"
 Email: dev@axonivy.com
Frontend:
 HostName: workflow.acme.com
 Port: 80

Template files

To craft your own configuration you would typically copy values from our template files, located under [engineDir]/
configuration/defaults or the “Configuration File Reference” and adjust them according to your needs. The template files
outline valid configuration attributes and document possible values. They are constantly improved by us, and are not designed
to store your actual configuration.

System Database
An untouched Axon.ivy engine runs in Demo mode. In consequence workflow data is never stored, but kept in an memory
database. To run a productive engine an external system database must be connected, where workflow data will be stored.

To define the database of the Axon.ivy engine, the SystemDb entries must be set.

sample ivy.yaml that configures a MySQL database as data store
SystemDb:
 Driver: org.mysql.jdbc.Driver
 Url: jdbc:mysql://myOtherMysql:3306/AxonIvySystemDatabase
 UserName: theUser
 Password: myPassword

To run the Axon.ivy engine with a System Database a license is required. See “Installing a Licence”.

The schema of the Axon.ivy System Database must exist on the referenced database system. The Engine Config UI and
“EngineConfigCli” simplify the creation of the SystemDb connection.

#ref_SystemDb

Configuration

50

Users
Users are kept in a so-called security system which can be defined in “ivy.yaml”. Each application defines in “app.yaml”
which security system is used. There are two types of security systems:

• Internal Security System: Used to manage the users directly on the Axon.ivy engine. There is only one Internal Security
System, which is called Ivy Security System. No further settings are available for this Security System. This is also the
default Security System for application which has no security system definied.

• External Security System: Used to synchronize users from a name and directory service such as Active Directory. The
example below shows a simple connection to an Active Directory. Have a look at the configuration file reference for all
supported name and directory services and further settings.

sample ivy.yaml that define an Active Directory as security system
SecuritySystems:
 # Custom definied name of your security system
 ActiveDirectoryOfMyCompany:
 Provider: "Microsoft Active Directory"
 Connection:
 Url: "ldap://activedirectory.axonivy.com:389"
 UserName: "activedirectory_user@axonivy.com"
 Password: "${encrypt:1234}"
 Binding:
 DefaultContext: "DC=axonivy,DC=com"
 ImportUsersOfGroup: "CN=AXON Ivy IT,DC=axonivy,DC=com"

app.yaml located in <application-directory>/app.yaml
SecuritySystem: ActiveDirectoryOfMyCompany

Email
The Axon.ivy engine sends emails for different purposes:

• Emails that are sent within a process via the mail step.

• New task assignment and daily task summaries to users.

• License expiration reminders to the administrators.

For this you have to configure an email server in “ivy.yaml”:

sample ivy.yaml that configures an email server:
EMail:
 Server:
 Host: mail.axonivy.com
 Port: 25
 MailAddress: noreply@axonivy.com
 User: someuser
 Password: somepassword

 DailyTaskSummary:
 # Time of day when the task summary mails will be sent.
 TriggerTime: "02:00"

You can configure task email notification settings for new task assignments and daily task summaries at application level
in “app.yaml”:

app.yaml located in <application-directory>/app.yaml
EMailNotification:
 DailySummaryOn: monday, tuesday, wednesday, thursday, friday
 OnNewTasks: true

#ref_SecuritySystems

Configuration

51

 Language: de

Users are able to customize their notification settings in a workflow ui like the Portal. The content of the task email notifications
can be customized by providing “Standard Processes”.

Html Theme
The look and feel of Html Dialogs is defined by its theme. You can change the appearance of any dialog on several scopes:

• Globally for all Html Dialogs: via “web.xml” .

• For a single application: in the “app.yaml”:

app.yaml located in <application-directory>/app.yaml
Properties:
 jsf.primefaces.theme: modena-ivy

• Or at session level: via the IvyPrimefacesThemeResolver.

Passwords
You may want to encrypt sensitive data like a password in your configuration files. To do this you can enclose any value with
"${encrypt:}". The Axon.ivy engine will automatically encrypt and replace that value in file, when the configuration
will be loaded. The system database password can be encrypted as follows:

ivy.yaml
SystemDb:
 Password: "${encrypt:myPassword}"

There is a smooth “Secrets” integration, which is very useful in container environments such as Docker.

Overriding Configuration

Environment variables

Configuration entries of YAML files can be overridden with environment variables of the operating system. Configuration
keys in YAML are hierarchic object trees separated by : characters. While the environment variable must be written uppercase
and separated by _ characters. You need also to prefix the environment variable with IVY_.

So to overwrite the SystemDb:Url of the “ivy.yaml” file, the environment variable IVY_SYSTEMDB_URL must be set.

Global application values

The “app.yaml” in the /configuration folder can be used to set global application configuration values that are applied to all
applications on the engine.

Docker Containers
Container technology empowers you to pull up reproducible, documented and complete isolated infrastructures. Axon.ivy
fully supports container environments such as Docker, Kubernetes or OpenShift. You can easily customize the configuration
of an Axon.ivy engine by using system environment variables or by providing configuration files like the “ivy.yaml” file.

The following example will override the url of the system database configuration using environment variables:

docker run -e "IVY_SYSTEMDB_URL=jdbc:mysql://db:3306/AxonIvySystemDatabase" ...

Instead of using environment variables, you can simply provide an “ivy.yaml” file.

ivy.yaml
SystemDb:
 Url: jdbc:mysql://db:3306/AxonIvySystemDatabase

https://developer.axonivy.com/doc/latest/PublicAPI/ch/ivyteam/ivy/jsf/primefaces/theme/IvyPrimefacesThemeResolver.html
https://www.docker.com/
https://kubernetes.io/
https://openshift.io/

Configuration

52

docker run -v ivy.yaml:/etc/axonivy-engine/ivy.yaml ...

For further docker examples have a look at our docker-samples GitHub repository.

Secrets

You can use Docker Secrets to store passwords. Simply create a file in /run/secrets which has the same name as the
configuration entry. For example, to provide SystemDb:Password as secret file you need to create the file /run/secrets/
ivy.SystemDb.Password

Configuration File Reference
ivy.yaml

[engineDir]/configuration/ivy.yaml

#

Axon.ivy Engine Configuration

#
This file configures the Axon.ivy engine and its external systems.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html
#
By default the engine is pre-configured to run in demo mode.
To run an engine in a productive environment at least the system database
must be configured.
#
SECRETS / PASSWORDS:
Any configuration value can be encrypted just by enclosing it with "${encrypt:}".
* to encrypt the string myPassword write "${encrypt:myPassword}"
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-password
#
OVERRIDING:
Any configuration value provided here can be set in alternative sources.
* environment variables: of the operating system can set app config entries.
Their key must be prefixed with 'IVY_'.
E.g. use 'IVY_SYSTEMDB_URL' to override the jdbc driver url.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-override-env
#

== System Database Settings ==
#
Axon.ivy requires a System Database to store the state of running workflow applications.
#
Unless you run the engine in Demo mode, a valid System DB driver, url and the user+password credentials
that are able to connect to the database are mandatory.

[Restart required]
SystemDb:
 # [MySQL]
 Driver: com.mysql.jdbc.Driver
 Url: jdbc:mysql://localhost:3306/AxonIvySystemDatabase
 # > jdbc:mysql://<host>[:<port>]/<database name>

 # [MariaDB]

https://github.com/ivy-samples/docker-samples

Configuration

53

 Driver: org.mariadb.jdbc.Driver
 Url: jdbc:mariadb://localhost:3306/AxonIvySystemDatabase
 # > jdbc:mariadb://<host>[:<port>]/<database name>

 # [MicrosoftSQL]
 Driver: com.microsoft.sqlserver.jdbc.SQLServerDriver
 Url: jdbc:sqlserver://localhost:1433;DatabaseName=AxonIvySystemDatabase
 # > jdbc:sqlserver://<host>[:<port>];DatabaseName=<database name>

 # [PostgreSQL]
 Driver: org.postgresql.Driver
 Url: jdbc:postgresql://localhost:5432/AxonIvySystemDatabase
 # > jdbc:postgresql://<host>[:<port>]/<database system>

 # The name of the user to connect to system database. E.g. root, sa, admin, ivy, AxonIvy
 UserName: root

 # The password of the user to connect to the system database.
 Password: "${encrypt:1234}"

 # If set to true the system database is automatically converted to the latest version during startup of the Axon.ivy Engine if needed.
 Autoconvert: false

 # Defines how long ivy should wait (in seconds) at startup for the availability of the db server
 BootTimeout: 60

 # Additional driver specific connection properties.
 DriverProperties:
 # [MySQL] Very likely to set if not ssl connection is used, to prevent warn logs
 useSSL: false
 # [MicrosoftSQL] Instance name of the MSSQL Server
 instanceName: SqlServer

== Deployment Setting ==
#
Deployment:

 # Directory where the server watches for files to deploy.
 # https://dev.axonivy.com/doc/latest/EngineGuideHtml/administration.html#administration-deployment
 #
 # You may want to use a UNC path to specify a remote network location.
 Directory: deploy

== Data Settings ==
#
Data:

 # Folder where applications are stored, unless otherwise defined in the deployment.
 # If you change this path, proceed as follows...
 # 1. Stop the engine
 # 2. Change this path and move the existing applications to this new directory
 # 3. Start the engine
 # Absolute paths and relative paths are supported
 # [Restart required] for existing apps

Configuration

54

 AppDirectory: applications

 # Root folder where application files are stored.
 # A change in this setting will NOT automatically move existing application files to the new location.
 # A change will require to manually move existing files to the new directory.
 # Absolute and relative (to the engine root directory) paths are supported.
 # If not set the files will be stored underneath each application's file directory.
 # [Restart required] for existing apps
 FilesDirectory:

 # Directory where the server writes temporary working files to.
 # [Restart required]
 WorkDirectory: work

== Elasticsearch Settings ==
#
Axon.ivy uses an Elasticsearch instance to provide a fast query interface against BusinessData.
The bundled instance is started on demand, in a separate JVM, when an API request needs it.
#
You can operate Axon.ivy with the bundled Elasticsearch server or with your own external Elasticsearch cluster.
#
[Restart required] except for UserName and Password of ExternalServer
Elasticsearch:

 # The bundled Elasticsearch server...
 # - is started in a separate JVM when a feature requires BusinessData access.
 # - reachable only on 'localhost' but the access is unprotected.
 # - JVM arguments used to start the bundled Elasticsearch server can be
 # configured in the 'elasticsearch/config/jvm.options' file.
 BundledServer:
 # The path to the directory where the bundled Elasticsearch server stores data.
 # It is recommend to configure a data directory that is located outsite of the Engine
 # installation directory to ease the Engine migration to newer versions.
 DataPath: elasticsearch/data
 # The name of the cluster of the bundled Elasticsearch server.
 # Must not be defined as it is managed by the Axon.ivy Engine.
 ClusterName:

 # Configure the URL of your own Elasticsearch server if you want to use it instead of the bundled server.
 #
 # To install your own Elastic search installation follow these steps
 # https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html
 #
 # Currently Axon.ivy supports Elasticsearch server versions in the 5.5.x range.
 # If your Elasticsearch server is running on another host,
 # the access to that instance has to be protected.
 # You can achieve that with a front-end webserver like NGINX that enforces basic authentication.
 ExternalServer:
 Url:
 UserName:
 Password: "${encrypt:}"
 # Defines how long ivy should wait (in seconds) for the availability of the external elasticsearch server while booting.
 BootTimeout: 60

 # For every business data type an Elasticsearch index will be created. E.g. for type ch.ivy.Dossier the index name is <NamePrefix>-ch.ivy.dossier.

Configuration

55

 Index:
 # The name prefix of the index to use to store business data.
 # If multiple ivy Engines use the same Elasticsearch server instance, you need to change this property, that every ivy Engine has an unique indices.
 NamePrefix: ivy.businessdata

 # Configures the Elasticsearch client. The client is the ivy engine which communicates with Elasticsearch.
 Client:
 # Maximum seconds to wait until a connection to Elastisearch can be established.
 ConnectTimeout: 10

 # Maximum seconds to wait for data sent by Elastisearch.
 # Raise this value if large datasets are expected.
 ReadTimeout: 30

== EMail Settings ==
#
EMail:
 Server:
 Host: localhost
 Port: -1

 # Email address that will be used for emails sent by the server (e.g. task notification emails)
 MailAddress: noreply@ivyserver.local
 User: guest
 Password: "${encrypt:}"

 #EncryptionMethod: NONE
 SSL:
 KeyAlias:
 UseKey: false

 DailyTaskSummary:
 # Time of day when the task summary mails will be sent.
 # Format is hh:mm. e.g. "02:00" or "14:15"
 TriggerTime: "00:00"

== Show Error Messages To End Users Settings ==
#
When an error occurs while processing a user request an error screen is displayed to the user.

The displayed error page can be customized for your needs:
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-file-ref-web-xml
#
Errors:
 # Whether stacktraces, detailed error reports, etc. should be shown to end users.
 #
 # By default (false) we only show a unique 'Error Id'. This 'Error Id' can be used to find the error in the log files.
 #
 # For security reasons normal users should not see technical implementation details.
 # But in development or pre-production environments it might be save to show the full error
 # details directly to the end user.
 ShowDetailsToEndUser: false

Configuration

56

== Persistence Setting ==
#
Persistence:
 JPA:
 # Persist ivyScript auto initialized fields with NULL values. Affects types are...
 # - ch.ivyteam.ivy.scripting.objects.Date
 # - ch.ivyteam.ivy.scripting.objects.DateTime
 # - ch.ivyteam.ivy.scripting.objects.Time
 # If this option is disabled auto initialized values are stored as before Axon.ivy 6.4.
 defaultInitializedAsNull: true

== Process Element Firing Statistic Settings ==
#
ProcessEngine:
 FiringStatistic:

 # If activated, a process element statistic is written periodically to the log-directory. If activated may slow down the server performance.
 Active: false

 # Interval in seconds the 'process element statistic' is written to the log directory
 Interval: 300

== SSL Client Settings ==
#
SSL:
 Client:
 # A key store is used to read client keys (certificates).
 # This is only required if a remote server requests a client certificate in order to authenticate the client.
 KeyStore:
 UseCustom: false
 KeyPassword: "${encrypt:changeit}"
 Algorithm: SunX509
 File: configuration/keystore.jks
 Password: "${encrypt:changeit}"
 Provider:
 Type: jks

 # A trust store is used to specify trusted server certificates or certificates of certification authorities.
 # An SSL client autenticates a server by using the certificates in a trust store.
 TrustStore:
 # The system trust store of the Java Runtime Environment (JRE) contains well known certification authorities
 UseSystem: true

 # The custom trust store contains certificates that are self signed or signed by an unknown certification authority
 UseCustom: false
 Algorithm: PKIX
 File: configuration/truststore.jks
 Password: "${encrypt:changeit}"
 Provider:
 Type: jks

 # Full qualified class name of a trust manager class that is used to validate server certificates.
 # This manager is only considered if neither a custom nor a system trust store is used.

Configuration

57

 ManagerClass:

== Failure Behaviour ==
#
SystemTask:
 # Defines the behaviour in case a system task fails.
 # Valid behaviours are...
 # * FAIL_TASK_DO_RETRY
 # * FAIL_TASK_DO_NOT_RETRY
 # * DESTROY_TASK
 # * DESTROY_CASE
 Failure.Behaviour: FAIL_TASK_DO_RETRY

 # Interval in seconds between executions of the search job for system tasks.
 # The job searches system tasks that were not executed because of failures.
 SearchJob.Interval: 900

== Thread Pools Settings ==
#
ThreadPool:
 # Executes process engine background operations like Database, WebService calls, etc.
 BackgroundOperationExecutor:
 # Minimum number of threads
 CorePoolSize: 5
 # Maximum number of threads
 MaximumPoolSize: 200

 # Executes unscheduled jobs
 ImmediateJobExecutor:
 # Minimum number of threads
 CorePoolSize: 5
 # Maximum number of threads
 MaximumPoolSize: 50

 # Executes scheduled jobs
 ScheduledJobExecutor:
 # Minimum number of threads
 CorePoolSize: 5

== Update Checker Settings ==
#
When newer Axon.ivy versions are available a message will be displayed on the Axon.ivy Engine main web page.
The update message contains information about the new versions and where those can be downloaded.
#
While checking for new versions the following statistic information are sent to the update server.
These information are only used to improve the product:
- Engine (version, up time)
- Configuration (number of: cluster nodes, users, licenced users, applications, process model, process model version, deleted process model version, running cases, running tasks)
- Licence information (number, organisation, individual)
- Operating system information (name, version, architecture, number of processors)
- System database (product name and version, driver, identification number)
- Java memory information (maximum heap memory, maximum non heap memory)

Configuration

58

- JVM (Java virtual machine) information (version, vendor, name)
- Host information (host name, SHA-256 hashes of IP address and MAC address to identify the host without being able to read the original IP address and MAC address itself)
#
UpdateChecker:
 # Whether Update notification messages are shown and statistic information are sent to the update server
 Enabled: true

== Admin Users ==
#
List of adminstrators which will be created during engine startup
Password an Email will be updated if the adminstrator already exist
Email is used to send info mails like license expiration

Default administrator in demo mode is called admin with password admin
[Restart required]
Administrators:

 # Example admin user with name myAdmin and password mySecret
 myAdmin:
 Password: "${encrypt:mySecret}"
 Email: info@localhost

== Security Systems ==

List of Security Systems.
A security system defines how users and roles are managed.
Security systems that are configured here can be used by applications.
!! If you change a security system then all users that are no longer defined by the changed security system will be deleted.
!! SecuritySystem changes are immediately reloaded and a user synchronization is executed. Wrong or incomplete configurations may lead to accidentally removing users!
!! Switching from Microsoft Active Directory or Novell eDirectory to Axon.ivy Security System keeps all synchronized users, but requires to set new passwords for them.
!! Tasks assigned to the deleted users are moved to the UNASSIGNED state and has to be manually reassigned later to a new user or role.

SecuritySystems:

 # Example security system with name mySecuritySystem
 mySecuritySystem:
 # [Axon.ivy Security System]
 # The Axon.ivy Security System manages the user and roles in the system database.
 # No additional configuration is needed.
 Provider: "ivy Security System"

 # [Microsoft Active Directory]
 # The Microsoft Active Directory security system uses LDAP to import users and user role relations from AD to the system database.
 # You should also configure at least the properties Url, UserName, Password and DefaultContext.
 Provider: "Microsoft Active Directory"

 # ["Novell eDirectory"]
 # The Novell eDirectory security system uses LDAP to import users and user role relations from AD to the system database.
 # You should also configure at least the propertie Url, UserName, Password and DefaultContext.
 Provider: "Novell eDirectory"

 Connection:
 # Url to the naming and directory service

Configuration

59

 Url: ldap://localhost:389

 # How to authenticate to the naming and directory service
 # none = no authentication (default if UserName/Password NOT configured)
 # simple = user name and password is used (default if UserName/Password is configured)
 AuthenticationKind: simple

 # User name to authenticate to the naming and directory service (java.naming.security.principal).
 # Valid formats are...
 # - LDAP Distingushed Name (RFC 4514) like cn=Administrator,dc=axonivy,dc=com
 # - Active Directory user name like Administrator@axonivy.com
 UserName:

 # Password to authenticate to the naming and directory service (java.naming.security.credentials).
 Password: "${encrypt:}"

 # Use a connection pool to store established LDAP connections
 UseLdapConnectionPool: false

 # Here you can configure additional environment properties for the LDAP context.
 Environment:
 # How to handle LDAP aliases. Possible values are... always, never, finding, searching
 # https://docs.oracle.com/javase/jndi/tutorial/ldap/misc/aliases.html
 "java.naming.ldap.derefAliases": always

 # Specifying the security protocol. If this property is unspecified, the behaviour is determined by the service provider. Possible value is... ssl
 # https://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html
 "java.naming.security.protocol":

 # Specifying how referrals encountered by the service provider are to be processed. Possible values are... follow, ignore, throw
 # https://docs.oracle.com/javase/jndi/tutorial/ldap/referral/index.html
 "java.naming.referral": follow

 Binding:
 # Default Context to import from.
 # The security system only sees and can import objects below the default context.
 # Normally, you want to see and import all users of a security system then set the default context to the root object/domain.
 # If you want to import only users from a certain department or location, then you can set the default context to the appropriate organization unit or location.
 # See also EverybodyUserGroupName and UserFilter to control/filter the users that are imported.
 # Format = LDAP Distingushed Name (RFC 4514) like dc=axonivy,dc=com or ou=ivyteam,dc=axonivy,dc=com
 DefaultContext:

 # If configured, then the security system imports only the users that are members of this user group.
 # See also DefaultContext and UserFilter to control/filter the users that are imported.
 # Format = LDAP Distingushed Name (RFC 4514) of a user group like cn=AxonIvyUser,ou=ivyteam,dc=axonivy,dc=com
 ImportUsersOfGroup:

 # The security system only imports users that match the given filter.
 # See also DefaultContext and EverybodyUserGroupName to control/filter the users that are imported.
 # Format = LDAP Search Filter (RFC 4515)
 # [Microsoft Active Directory]
 UserFilter: "(&(objectClass=user)(!(objectClass=computer)))"
 # [Novell eDirectory]
 UserFilter: "objectClass=inetOrgPerson"

 UserAttribute:

Configuration

60

 # The LDAP attribute that stores the name of a user
 # [Microsoft Active Directory]
 Name: sAMAccountName
 # [Novell eDirectory]
 Name: uid

 # The LDAP attribute that stores the full name of a user
 # [Microsoft Active Directory]
 FullName: displayName
 # [Novell eDirectory]
 FullName: fullName

 # The LDAP attribute that stores the mail address of a user
 EMail: mail

 # The LDAP attribute that stores the langauge of a user
 Language:

 # Here you can specify a list of additional LDAP attributes that are imported and available as user properties (IUser.getProperty)
 Properties:
 # Maps a user property to an LDAP attribute
 # In the example below 'phoneNumber' is the name of the user property.
 # The value of the property is imported from the LDAP attribute 'phone' of the user.
 phoneNumber: phone

 Membership:
 # The LDAP attribute that stores the user groups a user is member of
 # [Microsoft Active Directory]
 UserMemberOfAttribute: memberOf
 # [Novell eDirectory]
 UserMemberOfAttribute: groupMembership

 # Should the security system use the LDAP attribute configured in UserMemberOfAttribute (memberOf, groupMembership) to import user role membership.
 # Sometimes this LDAP attribute is not available because of security concerns.
 # If you set this to false, then the security system will import the user role membership with an alternative but slower mechanism.
 # [Microsoft Active Directory]
 UseUserMemberOfForUserRoleMembership: true
 # [Novell eDirectory]
 UseUserMemberOfForUserRoleMembership: false

 # The LDAP attribute that stores the user groups a user group is member of
 # [Microsoft Active Directory]
 UserGroupMemberOfAttribute: memberOf
 # [Novell eDirectory]
 UserGroupMemberOfAttribute: groupMembership

 # The LDAP attribute that stores the members (user, user groups) of a user group
 # [Microsoft Active Directory]
 UserGroupMembersAttribute: member
 # [Novell eDirectory]
 UserGroupMembersAttribute: uniqueMember

 # Does the security system has to traverse nested groups (groups that are members of a group) to find all users that are member of a user group?
 # Some external security systems provide all users on the member attribute of a user group even those that are members of nested groups.
 # [Microsoft Active Directory]
 TraverseNestedGroups: true
 # [Novell eDirectory]

Configuration

61

 TraverseNestedGroups: false

 # The number of objects the security system can read in one LDAP request
 PageSize: 500

 # Time of day when the security system will synchronize the users.
 # Format is hh:mm. e.g. "02:00" or "14:15"
 UpdateTime: "00:00"

app.yaml
[engineDir]/configuration/app.yaml

#

Axon.ivy Application Configuration

This files defines the configuration for its application.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-file-ref-app-yaml

By default applications are pre-configured to run without any dependencies.
However in productive enviroments applications often interact with many
external system such a Mail Servers (SMTP) or Directory services (LDAP).

The 'defaults/app.yaml' serves as template that can be copied into
an application directory as 'app.yaml' file.
However 'app.yaml' can be deployed as part of the application projects.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/administration.html#administration-deployment
#
SECRETS / PASSWORDS:
Any configuration value can be encrypted just by enclosing it with "${encrypt:}".
* to encrypt the string myPassword write "${encrypt:myPassword}"
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-password
#
OVERRIDING:
Any configuration value provided here can be set in alternative sources.
* environment variables: of the operating system can set app config entries.
Their key must be prefixed with 'IVY_APPLICATIONS_MYAPPNAME_'.
E.g. use 'IVY_APPLICATIONS_MYAPPNAME_SECURITYSYSTEM' to override the security system.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-override-env
* ivy.yaml: can contain app specific entries, by placing them under the 'Applications' node.
Applications:
myAppName:
SecuritySystem: mySecuritySystem
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-file-ref-ivy-yaml
#

== Data Settings ==
#
Data:

 # Application folder where application files are stored. It overrides the root file folder setting.
 # A change in this setting will NOT automatically move existing application files to the new location.

Configuration

62

 # A change will require to manually move existing files to the new directory.
 # Absolute and relative (to the engine root directory) paths are supported.
 # If not set the files will be stored in an application specific directory underneath the root file folder.
 # [Restart required] for existing apps
 FilesDirectory:

== Security System ==

A security system manages users and roles and must be defined in ivy.yaml with a name.
Here you can reference those security system by its name. If no security system is defined the 'ivy Security System' is in charge.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-users
!! If you change the security system of an application then all users that are no longer defined by the new security system will be deleted.
!! Tasks assigned to the deleted users are moved to the UNASSIGNED state and has to be manually reassigned later to a new user or role.
#
SecuritySystem:

== Environment ==
#
Environments can be defined in ivy projects. Here you can activate a specific environment.
#
ActiveEnvironment: Default

== EMail Notification Settings ==

These email notification settings will be applied to all users of an application.
Users still have the option to customize their e-mail notification settings for themselves.
#
EMailNotification:
 # Whether users should receive a mail when a new task is assigned. Possible values are: true, false
 OnNewTasks: false

 # On which days of the week the users should receive a daily task summary.
 # Possible values are: never, always, monday, tuesday, wednesday, thursday, friday, saturday, sunday
 # Any combination of weekdays is allowed.
 # In ivy.yaml you can configure when the email is sent EMail:DailyTaskSummary:TriggerTime
 DailySummaryOn: never

 # Language of the emails. You can specify a locale. e.g. de, de_CH, de_AT, de_DE, en, en_GB, en_US, fr, vi
 Language: en

== Standard Processes ==

Standard processes are a set of predefined processes, which you can customize in your ivy project.
To enable these custom processes, the library id of the ivy project must be specified here.
The library id is <group-id>:<project-id> from the ivy project deployment defintion.
e.g the library id of the portal template is "ch.ivyteam.ivy.project.portal:portalTemplate"
#
StandardProcess:

 # https://dev.axonivy.com/doc/latest/EngineGuideHtml/administration.html#administration-standardprocess-defaultpages

Configuration

63

 DefaultPages:

 # https://dev.axonivy.com/doc/latest/EngineGuideHtml/administration.html#administration-standardprocess-emailnotifications
 MailNotification:

== Properties ==

Application properties can be queried by ivy projects and allows ivy developers to make their projects configurable.
#
Properties:

 # JSF Primeface Theme that is used by HTML Dialogs.
 # Available themes:
 # ivy, modena-ivy, afterdark, afternoon, afterwork, aristo, black-tie blitzer, bluesky, bootstrap, casablanca, cupertino, cruze, dark-hive,
 # delta, dot-luv, ggplant, excite-bike, flick, glass-x, home, hot-sneaks, humanity, le-frog, midnight, mint-choc, overcast, pepper-grinder,
 # redmond, rocket, sam, smoothness, south-street, start, sunny, swanky-purse, trontastic, ui-darkness, ui-lightness, vader, modena
 jsf.primefaces.theme: modena-ivy

== Global Variables ==

Global variables are defined in ivy projects.
All of those can be overridden independently of the environment.
#
GlobalVariables:
 myGlobalVariable: value

== Databases ==

Databases are defined in ivy projects with a name.
Connection details from those databases can be overridden independently of the environment by addressing the database with its name.
#
Databases:

 # This is an example configuration for the database with the name myDb.
 myDb:
 Url: "jdbc:mysql://localhost:3306/myDbName"
 Driver: com.mysql.jdbc.Driver
 UserName: admin
 Password: "${encrypt:1234}"
 MaxConnections: 5

 # Properties are merged with higher priority with those from the project.
 Properties:
 name: value

== RestClients ==
#
Rest Clients are defined in ivy projects with a name.
Any configuration from those clients can be overriden independently of the environment by addressing the client with its name.
#

Configuration

64

RestClients:

 # This is an example configuration for the rest client with the name myRestClient.
 myRestClient:
 Url: "http://localhost:8080"

 # If defined, all features from the project will be completely replaced.
 Features:
 - ch.ivyteam.ivy.rest.client.mapper.JsonFeature
 - ch.ivyteam.ivy.rest.client.authentication.HttpBasicAuthenticationFeature

 # Properties are merged with higher priority with those from the project.
 Properties:
 username: admin
 password: "${encrypt:1234}"
 name: value

== WebServiceClients ==
#
Web Service Clients are defined in ivy projects with a name.
Any configuration from those clients can be overriden independently of the environment by addressing the client with its name.
#
WebServiceClients:

 # This is an example configuration for the soap web service client with the name myWebService.
 myWebService:

 # If definied, endpoint urls will be completely replaced per port type with those from the project.
 Endpoints:

 # name of the port type, which is defined in the project.
 myPortType:
 - "http://localhost:8088"
 - "http://webservice/api/soap"

 # If defined, all features from the project will be completely replaced.
 Features:
 - ch.ivyteam.ivy.webservice.exec.cxf.feature.HttpBasicAuthenticationFeature
 - ch.ivyteam.ivy.webservice.exec.cxf.feature.ProxyFeature

 # Properties are merged with higher priority with those from the project.
 Properties:
 username: admin
 password: "${encrypt:1234}"
 name: value

 # Authentication property for the legacy axis stack
 # Possible values for axis 1: NONE, HTTP_BASIC
 # Possible values for axis 2: NONE, HTTP_BASIC, HTTP_DIGEST, NTLM
 authType: NONE

ivy.webserver.yaml

[engineDir]/configuration/defaults/ivy.webserver.yaml

Configuration

65

#

Axon.ivy Web Server Configuration

#
This file is a template to configure the internal Web Server of the Axon.ivy engine.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html

Copy contents of this template to 'configuration/ivy.yaml' before adjusting them to your needs.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-file-ref-ivy-yaml
#
By default this configuration enables all available features
of the Axon.ivy engine so that all capabilities that might are used
by a workflow project are accessible.
#

OVERRIDING:
Any configuration value of this file can be set in alternative sources.
* environment variables: of the operating system can set app config entries.
Their key must be prefixed with 'IVY_'.
E.g. use 'IVY_FRONTEND_PORT' to override the front-end webserver port.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-override-env

== Front-end Web Server (Reverse Proxy, IIS, Apache, Load balancer, ...) Settings ==
#
Links generated by Axon.ivy often contain absolute links to the ivy server (e.g. for mails).
If your Axon.ivy engine is only accessible for clients trough a front-end webserver,
its host, port and protocol of it must be specified.
Frontend:
 # Hostname of the accessible web server
 HostName: localhost

 # Port of the accessible web server
 Port: 443

 # Protocol of the accessible web server
 Protocol: https

== REST Service Settings ==
#
Configures the RESTful services provided.
[Restart required]
REST.Servlet:
 # Controls the REST servlet interface. If disabled no REST resources will be accessible.
 # Calls to remote REST services are still possible.
 Enabled: true

 # Provides the general CSRF protection via 'X-Requested-By' header for REST services.
 CSRF.Protection: true

 # Provide the REST resources for the mobile app under '{application}/api/workflow'.
 MobileWorkflow.API: true

Configuration

66

 # Allows the service developer to get diagnostic information about request processing by Jersey.
 # Those diagnostic/tracing information are returned in response headers (X-Jersey-Tracing-nnn).
 # On productive environments this feature should not be turned on.
 # Valid values are either "OFF", "ON_DEMAND" or "ALL"
 Tracing: "OFF"

== Miscellaneous Settings ==

Session identifier will be renewed on login to prevent the 'Session Fixation' attack.
Session.RenewIdOnLogin: true

Name of the Ivy servlet context. Use a simple name without any special characters (e.g. ivy).
[Restart required]
WebServer.IvyContextName: ivy

Disable it if you don't use the Mobile Offline Dialog feature.
[Restart required]
OfflineDialog.Enabled: true

== Web Server Connector Settings ==
https://tomcat.apache.org/tomcat-8.5-doc/config/http.html
Connector:
 # [Restart required]
 HTTP:
 Enabled: true
 Port: 8080
 AcceptCount: 100
 Address:
 AllowTrace: false
 BufferSize: 2048
 CompressableMimeType: text/html,text/xml,text/plain
 Compression: off
 ConnectionLinger: -1
 ConnectionTimeout: 60000
 DisableUploadTimeout: true
 EmptySessionPath: false
 EnableLookups: false
 MaxHttpHeaderSize: 8192
 MaxKeepAliveRequests: 100
 MaxPostSize: 2097152
 MaxSavePostSize: 4096
 MaxSpareThreads: 50
 MaxThreads: 200
 MinSpareThreads: 4
 NoCompressionUserAgents:
 ProxyName:
 ProxyPort:
 RedirectPort: 8443
 RestrictedUserAgents:
 Server:
 SocketBuffer: 9000
 Strategy: lf
 TcpNoDelay: true
 ThreadPriority: 5

Configuration

67

 URIEncoding: UTF-8
 UseBodyEncodingForURI: false
 UseIPVHosts: false
 XpoweredBy: false

 # [Restart required]
 HTTPS:
 Enabled: true
 Port: 8443
 AcceptCount: 1000
 Address:
 Algorithm:
 AllowTrace: false
 BufferSize: 2048
 Ciphers:
 ClientAuth: false
 CompressableMimeType: text/html,text/xml,text/plain
 Compression: off
 ConnectionLinger: -1
 ConnectionTimeout: 60000
 DisableUploadTimeout: true
 EmptySessionPath: false
 EnableLookups: false
 KeyAlias:
 KeystoreFile: configuration/keystore.jks
 KeystorePass:
 KeystoreType:
 MaxHttpHeaderSize: 8192
 MaxKeepAliveRequests: 100
 MaxPostSize: 2097152
 MaxSavePostSize: 4096
 MaxSpareThreads: 50
 MaxThreads: 200
 MinSpareThreads: 4
 NoCompressionUserAgents:
 ProxyName:
 ProxyPort:
 RedirectPort: 8443
 RestrictedUserAgents:
 Server:
 SocketBuffer: 9000
 SslProtocol: TLS
 Strategy: lf
 TcpNoDelay: true
 ThreadPriority: 5
 TruststoreFile:
 TruststorePass:
 TruststoreType:
 URIEncoding: UTF-8
 UseBodyEncodingForURI: false
 UseIPVHosts: false
 XpoweredBy: false

 # [Restart required]
 AJP:
 Enabled: true
 Port: 8009
 Address:

Configuration

68

 AllowTrace: false
 BackLog: 100
 BufferSize: 2048
 ConnectionTimeout: 60000
 EmptySessionPath: false
 EnableLookups: false
 MaxPostSize: 2097152
 MaxSavePostSize: 4096
 MaxSpareThreads: 50
 MaxThreads: 200
 MinSpareThreads: 4
 PacketSize: 8192
 ProxyName:
 ProxyPort:
 RedirectPort: 8443
 TcpNoDelay: true
 ThreadPriority: 5
 TomcatAuthentication: false
 URIEncoding: UTF-8
 UseBodyEncodingForURI: false
 UseIPVHosts: false
 XpoweredBy: false

ivy.cache.properties
[engineDir]/configuration/ivy.cache.properties

#

Axon.ivy System Database Cache

#
This file configures how data, loaded from the internal system database, are cached in the memory.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html

This file rarely has to be adjusted if a concrete performance issue has been identified.
#
#
OVERRIDING:
Any configuration value provided here can be set in alternative sources.
* environment variables: of the operating system can set cache entries.
Their key must be prefixed with 'IVY_SYSTEMDB_CACHE_'.
E.g. use 'IVY_SYSTEMDB_CACHE_CH_IVYTEAM_IVY_CASEMAP_INTERNAL_DATA_CASEMAPBUSINESSCASEDATA_COUNTLIMIT' to raise a count limit.
https://dev.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-override-env
#

== System Database Cache Settings ==

ch.ivyteam.ivy.casemap.internal.data.CaseMapBusinessCaseData.CountLimit=1000
ch.ivyteam.ivy.casemap.internal.data.CaseMapBusinessCaseData.UsageLimit=57600
ch.ivyteam.ivy.casemap.internal.data.CaseMapEventData.CountLimit=1000
ch.ivyteam.ivy.casemap.internal.data.CaseMapEventData.UsageLimit=57600
ch.ivyteam.ivy.cm.internal.data.BinaryContentData.CountLimit=30000
ch.ivyteam.ivy.cm.internal.data.BinaryContentData.UsageLimit=360000
ch.ivyteam.ivy.cm.internal.data.ContentObjectData.CountLimit=10000

Configuration

69

ch.ivyteam.ivy.cm.internal.data.ContentObjectData.UsageLimit=360000
ch.ivyteam.ivy.cm.internal.data.ContentObjectValueData.CountLimit=30000
ch.ivyteam.ivy.cm.internal.data.ContentObjectValueData.UsageLimit=360000
ch.ivyteam.ivy.cm.internal.data.StringContentData.CountLimit=30000
ch.ivyteam.ivy.cm.internal.data.StringContentData.UsageLimit=360000
ch.ivyteam.ivy.cm.internal.data.TextContentData.CountLimit=30000
ch.ivyteam.ivy.cm.internal.data.TextContentData.UsageLimit=360000
ch.ivyteam.ivy.security.internal.data.AccessControlData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.AccessControlData.UsageLimit=57600
ch.ivyteam.ivy.security.internal.data.RichDialogUserContextData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.RichDialogUserContextData.UsageLimit=57600
ch.ivyteam.ivy.security.internal.data.RolePropertyData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.RolePropertyData.UsageLimit=57600
ch.ivyteam.ivy.security.internal.data.UserAbsenceData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.UserAbsenceData.UsageLimit=57600
ch.ivyteam.ivy.security.internal.data.UserData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.UserData.UsageLimit=57600
ch.ivyteam.ivy.security.internal.data.UserLocationData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.UserLocationData.UsageLimit=57600
ch.ivyteam.ivy.security.internal.data.UserPropertyData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.UserPropertyData.UsageLimit=57600
ch.ivyteam.ivy.security.internal.data.UserSubstituteData.CountLimit=1000
ch.ivyteam.ivy.security.internal.data.UserSubstituteData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.AdditionalPropertyData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.AdditionalPropertyData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.BusinessCaseDataData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.BusinessCaseDataData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.CaseData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.CaseData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.EventLogCaseHistoryData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.EventLogCaseHistoryData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.EventLogData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.EventLogData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.EventLogDataData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.EventLogDataData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.EventLogStatusData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.EventLogStatusData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.EventLogTaskHistoryData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.EventLogTaskHistoryData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.IntermediateEventData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.IntermediateEventData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.IntermediateEventDataData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.IntermediateEventDataData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.IntermediateEventElementData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.IntermediateEventElementData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.NoteData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.NoteData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.PageArchiveData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.PageArchiveData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.PageElementData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.PageElementData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.SignaledTaskData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.SignaledTaskData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.SignalEventData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.SignalEventData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.SignalEventDataData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.SignalEventDataData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.StartElementData.CountLimit=1000

Configuration

70

ch.ivyteam.ivy.workflow.internal.data.StartElementData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.StartEventElementData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.StartEventElementData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.StartSignalEventElementData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.StartSignalEventElementData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.StartTaskDataData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.StartTaskDataData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskBoundarySignalEventReceiverData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskBoundarySignalEventReceiverData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskDataData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskDataData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskElementData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskElementData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskEndData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskEndData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskLocationData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskLocationData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskStartData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskStartData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.TaskSwitchEventData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.TaskSwitchEventData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.WebServiceProcessData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.WebServiceProcessData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.WebServiceProcStartElementData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.WebServiceProcStartElementData.UsageLimit=57600
ch.ivyteam.ivy.workflow.internal.data.WorkflowEventData.CountLimit=1000
ch.ivyteam.ivy.workflow.internal.data.WorkflowEventData.UsageLimit=57600

log4jconfig.xml
[engineDir]/configuration/log4jconfig.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<!--
 ===
 Axon.ivy Logging Configuration
 ===

 This is the logging configuration file for Axon.ivy Engine.
 It defines which log messages are logged (category/priority) and where the logs are written to.

 Logging in Axon.ivy Engine is based on a 3rd party library called Log4J.
 http://logging.apache.org/log4j

-->
<log4j:configuration debug="false" xmlns:log4j="http://jakarta.apache.org/log4j/">

 <!-- appender that writes log messages to 'logs/ivy.log' -->
 <appender name="FileLog" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="Threshold" value="INFO"/>
 <param name="File" value="${user.dir}/logs/ivy.log"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <layout class="ch.ivyteam.log.layout.IvyLog4jLayout">
 <param name="DateFormat" value="yyyy-MM-dd HH:mm:ss.SSS"/>
 </layout>

Configuration

71

 </appender>

 <!-- appender that writes log messages with priority WARN or higher to the console -->
 <appender name="ConsoleAppender" class="org.apache.log4j.ConsoleAppender">
 <param name="Threshold" value="WARN"/>
 <layout class="ch.ivyteam.log.layout.IvyLog4jLayout">
 <param name="DateFormat" value="HH:mm:ss.SSS"/>
 <param name="ContextPrinting" value="false"/>
 <param name="FixedCategoryLength" value="40"/>
 </layout>
 </appender>

 <!-- appender that writes configuration changes to 'logs/config.log' -->
 <appender name="ConfigLog" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="File" value="${user.dir}/logs/config.log"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <layout class="ch.ivyteam.log.layout.IvyLog4jLayout">
 <param name="DateFormat" value="yyyy-MM-dd HH:mm:ss.SSS"/>
 <param name="ContextPrinting" value="false"/>
 </layout>
 </appender>

 <!-- appender that writes log messages to 'logs/runtime.log' -->
 <appender name="RuntimeLog" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="File" value="${user.dir}/logs/runtime.log"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <layout class="ch.ivyteam.log.layout.IvyLog4jLayout">
 <param name="DateFormat" value="yyyy-MM-dd HH:mm:ss.SSS"/>
 </layout>
 </appender>

 <!-- prevent "ClientAbortException: java.io.IOException: Broken pipe" from filling the log -->
 <category name="org.apache.myfaces.application.ResourceHandlerImpl" class="ch.ivyteam.log.Logger">
 <priority value="FATAL"/>
 </category>

 <!-- disable deprecated integer API warnings -->
 <!--
 <category name="ch.ivyteam.ivy.persistence.restricted.TableKeyCompatibilityConvertor" class="ch.ivyteam.log.Logger">
 <priority value="ERROR"/>
 </category>
 -->

 <!--
 Enables web service client SOAP message logging for a certain application and process model.
 Replace {application} and {process_model} in the logger name below with the name of the application and process model you want to enable the logging.
 -->
 <!--
 <category name="runtimelog.{application}.{process_model}.web_service" class="ch.ivyteam.log.Logger" additivity="false">
 <priority value="DEBUG"/>
 <appender-ref ref="RuntimeLog"/>
 </category>
 -->

 <!--
 Enables Rest client message logging for a certain application and process model.
 Replace {application} and {process_model} in the logger name below with the name of the application and process model you want to enable the logging.
 -->

Configuration

72

 <!--
 <category name="runtimelog.{application}.{process_model}.rest_client" class="ch.ivyteam.log.Logger" additivity="false">
 <priority value="DEBUG"/>
 <appender-ref ref="RuntimeLog"/>
 </category>
 -->

 <!--
 Config Monitoring: Writes an audit log that allows to track configuration changes over time.
 These logs are not passed to the root logger (additivity="false")
 -->
 <logger name="ch.ivyteam.ivy.audit.config" additivity="false">
 <level value="INFO"/>
 <appender-ref ref="ConfigLog"/>
 </logger>

 <!-- every log message with priority INFO or higher is passed to the file and console appender -->
 <root>
 <level value ="INFO" />
 <appender-ref ref="FileLog"/>
 <appender-ref ref="ConsoleAppender"/>
 </root>

</log4j:configuration>

web.xml
[engineDir]/webapps/ivy/WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!--
 ==
 Configures the embedded Tomcat Webserver of Axon.ivy
 ==

 Please keep the web.xml file on the designer and engine synchronous
 to have the same settings on designer and engine,
 because this file is not deployed from the designer to the engine.

 See apache tomcat documentation for more information about this configuration:
 http://tomcat.apache.org/tomcat-8.5-doc/config/

 After a change in the web.xml a restart of Axon.ivy is required
 to apply the new configuration.

-->
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0"
 metadata-complete="false">

 <!-- ====================== Html Dialog Configuration =================== -->

 <!--
 THEME:
 To set the primefaces theme (default is 'modena-ivy', was 'ivy' with 5.1)

Configuration

73

 remove the comment markers from around the context-param below
 See available themes: http://primefaces.org/themes.html
 -->
 <!--
 <context-param>
 <param-name>primefaces.THEME</param-name>
 <param-value>#{ivyPrimefacesThemeResolver.getTheme('modena-ivy')}</param-value>
 </context-param>
 -->

 <!--
 #{ivyThemeResolver.getThemes()} returns a list of all by default available themes.
 If additional customer specific themes are installed they can be configured as comma separated list in the context-param below.
 #{ivyThemeResolver.getThemes()} will then additionally also return the configured customer specific themes.
 -->
 <!--
 <context-param>
 <param-name>primefaces.customer.themes</param-name>
 <param-value></param-value>
 </context-param>
 -->

 <!-- ======================= Error pages ================================ -->
 <!--
 Custom error pages can be added with error-page elements bellow.
 The referenced error-page must be placed in the folder 'webapps/ivy'.

 The pre-configured default error page is:

 <error-page>
 <location>/ivy-error-page.xhtml </location>
 </error-page>

 By adding the <exception-type> tag to the <error-page> configuration
 it is also possible to configure a specific error page for status codes
 or kind of exceptions:

 <error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/custom-exception-error-page.xhtml</location>
 </error-page>
 <error-page>
 <error-code>404</error-code>
 <location>/custom-404-error-page.xhtml</location>
 </error-page>

 Implementation:
 Use the 'ErrorPageMBean' to retrieve information about the thrown exception and the environment:
 https://developer.axonivy.com/doc/latest/PublicAPI/ch/ivyteam/ivy/webserver/ErrorPageMBean.html
 -->
 <!--
 <error-page>
 <error-code>404</error-code>
 <location>/custom-404-error-page.xhtml</location>
 </error-page>
 -->

Configuration

74

 <!-- ==================== Default Session Configuration ================= -->
 <session-config>
 <!--
 session-timeout: [default=30]

 Defines the amount of time in minutes after which an inactive user session will be closed.
 Closing sessions means that server side state (e.g. Html Dialog instance) is flushed.
 -->
 <session-timeout>30</session-timeout>

 <!--
 cookie-config/secure: [default=false]

 Enable the secure flag when accessing the Webserver over HTTPS (strongly recommended).
 When enabled the session cookie is only transmitted over HTTPS and not over HTTP.
 -->
 <!--
 <cookie-config>
 <secure>true</secure>
 </cookie-config>
 -->
 </session-config>

 <!-- ==================== Security Headers ============================== -->
 <!-- -->
 <!-- Some commonly recommended HTTP Security Headers are configured here -->
 <!-- for the /ivy web application. -->
 <!-- These Security Headers are added on the HTTP Responses -->
 <!-- to the Client Browser. -->
 <!-- But not all Security Headers are supported by all Web browsers. -->
 <!-- See: https://tomcat.apache.org/tomcat-8.5-doc/config/filter.html -->
 <!-- -->
 <!-- |=========================|===============| -->
 <!-- | HEADER | VALUE | -->
 <!-- |=========================|===============| -->
 <!-- | X-Frame-Options | SAMEORIGIN | -->
 <!-- | X-XSS-Protection | 1; mode=block | -->
 <!-- | X-Content-Type-Options | nosniff | -->
 <!-- |=========================|===============| -->
 <!-- -->
 <filter-mapping>
 <filter-name>httpSecurityHeaders</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <filter>
 <filter-name>httpSecurityHeaders</filter-name>
 <filter-class>org.apache.catalina.filters.HttpHeaderSecurityFilter</filter-class>
 <init-param>
 <param-name>antiClickJackingOption</param-name>
 <param-value>SAMEORIGIN</param-value>
 </init-param>
 <init-param>
 <param-name>xssProtectionEnabled</param-name>
 <param-value>true</param-value>
 </init-param>

Configuration

75

 <init-param>
 <param-name>blockContentTypeSniffingEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 </filter>
</web-app>

context.xml
[engineDir]/webapps/ivy/META-INF/context.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--
 ==
 Configures Valves and Realms of the embedded Tomcat Webserver
 ==

 Please keep the context.xml file on the designer and engine in sync
 to have the same settings on designer and engine
 as this file is not deployed from the designer to the engine

 See apache tomcat documentation for more information about context configuration:
 https://tomcat.apache.org/tomcat-8.5-doc/config/context.html

-->
<Context antiResourceLocking="false" privileged="true" >

 <!-- ====================== Tomcat Valves ====================== -->

 <!--
 Limits the access to the ivy application to clients connecting from localhost.
 -->
 <!--
 <Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="127\.\d+\.\d+\.\d+|::1|0:0:0:0:0:0:0:1" />
 -->

 <!--
 Creates an access log entry for each request against the ivy application.
 -->
 <!--
 <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
 prefix="access_log." suffix=".txt"
 pattern="%h %l %u %t "%r" %s %b" />
 -->

 <!-- ====================== Axon.ivy Valves ==================== -->

 <!--
 SingleSignOnValve:

 Enables single sign on of the user given in a request header field.
 The name of the request header field can be configured in the attribute 'userNameHeader'.

 !! Only use this Valve if you exclusively access Axon.ivy over the WebApplication Firewall. !!

Configuration

76

 !! Otherwise this will be a security issue. !!

 This Valve is useful if Axon.ivy is protected by a WebApplication Firewall (WAF) with an integrated
 Identity and Access Management (IAM). Those systems will authenticate and authorize users.
 The identified user is then sent from the WAF to Axon.ivy using a HTTP request header.

 WebBrowser ==> WAF ==> Axon.ivy

 ^ |
 | |
 v v

 IAM ==> Active Directory

 https://developer.axonivy.com/doc/latest/EngineGuideHtml/integration.html#integration.waf.sso
 -->
 <!--
 <Valve className="ch.ivyteam.ivy.webserver.security.SingleSignOnValve" userNameHeader="user"/>
 -->

 <!-- ====================== Custom Valves ====================== -->

 <!--
 You can configure any third party valve or even your own implementation of a valve.
 A full valve sample implementation can be found on GitHub:

 https://github.com/ivy-samples/ivy-extension-demos/tree/master/ProcessingValve

 -->

</Context>

77

Chapter 5. Security
General

This chapter describes how to run an Axon.ivy Engine in a secure way. This is important when providing an ivy engine in
a secure intranet environment and especially when making an engine accessible over the internet. Some parts might be done
by the IT Operation provider.

There are at least seven important topics:

1. Run the Axon.ivy Engine behind a fully patched front-end server (like IIS, nginx) with restricted accessibility (paths,
ports, users, etc.)

2. Only allow access to the URLs of your application / block access to system URLs

3. Don’t allow direct access to the Axon.ivy Engine

4. Run the Axon.ivy Engine with a dedicated system user and Database users with limited access rights

5. Run the latest Axon.ivy Engine major version with all updates marked as security relevant.

6. Only serve users over HTTPS (configured on the front-end server (IIS/nginx)

7. Document and/or automate the server setup

8. Ensure that the provider performs daily backups (Database, relevant Engine folders)

Figure 5.1. Deployment sample (with combined front-end server and ivy engine)

Front-end Server
A front-end server is a server over which a user accesses the Axon.ivy Engine. There are roughly three types of front-end
servers:

• Web servers (e.g. Microsoft IIS, nginx, Apache HTTP Server)

Security

78

• Web Application Firewalls (WAF)

• Custom cloud provider reverse proxies (often nginx based)

Port Configuration
Aim: Only allow communication with the Axon.ivy Engine through the front-end server.

Don’t allow direct access to the Axon.ivy Engine ports (e.g. 8080, 8443, 8009) from the outside. Requests should always be
perfomed through a front-end server (e.g. IIS). It’s best to open up only the ports in the firewall that are really needed (most
of the times (HTTP (80) and/or HTTPS (443). It's best to automate these port tests for continuous security.

Test: Check if you can reach the ivy Engine over port 8080 (the port defined in the config).

Expected outcome: The Engine should not be reachable.

Warning

When using Ubuntu Linux as a server make sure to enable and configure the firewall (ufw) as it's not enabled
by default.

Additional Security Headers
Following additional security headers are recommended.

Header name Description

Strict-Transport-Security Set this header if the Engine should only be accessed over
HTTPS (strongly recommended). For more information, see:
Strict-Transport-Security. Can be adjusted on the embedded
Tomcat with the pre-configured HttpHeaderSecurityFilter in
the “web.xml”

Content-Security-Policy Set this header if you want to reduce the risk of having
an exploitable Cross-site scripting (XSS) vulnerability.
With a Content-Security-Policy you can define from which
locations external resources can be loaded and if scripts
embedded in HTML can be executed. For more information,
see: Content Security Policy (CSP). A CSP example
with the embedded Tomcat is available here: https://
answers.axonivy.com/questions/2982

Referrer-Policy Set this header if you want to control how or if the referrer is
disclosed to other sites. For more information, see: Referrer-
Policy

Table 5.1. Additional Security Headers

Path Configuration
Aim: Only allow paths from the front-end server to the Axon.ivy Engine that are required by your ivy projects to work
correctly.

Test: Check if you can reach http(s)://<front-end-server>/ivy/error (and all other blocked URLs). Also check if you can
access your process that should be available to end users. Note that the ivy servlet is not necessarily running under /ivy/. It
is best to automate these tests for continuous security.

Expected Outcome: Forbidden paths should not be reachable (HTTP Status: 4xx). The process should be reachable for end
users.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://tomcat.apache.org/tomcat-8.5-doc/config/filter.html#HTTP_Header_Security_Filter
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://answers.axonivy.com/questions/2982
https://answers.axonivy.com/questions/2982
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

Security

79

Example for a JSF-based Application: Filter following URL parts:

URL Part Also blocks Used for

/ivy/error Displaying and administering Errors

/ivy/pro/System System apps (Admin UI)

/ivy/pagearchive Page Archive

/ivy/rd /ivy/rdlib, /ivy/rdjnlp RIA (ULC)

/ivy/ulcload ULC Load Tests

/ivy/ws/System/ PortalConnector Web Services PortalConnector Web Services, used by
Portal (!)

/ivy/api/ Workflow API, REST APIs

/ivy/wf/ Server Workflow UI

/ivy/info Process overview page

Table 5.2. URL Parts to Block

Block URLs in IIS

Unfortunately, IIS does not seem to have support for white listing URLs, so we have to use a black list approach using request
filtering, in which we block URL segments.

Warning

When using the request filter on IIS the URL parts are generally not allowed. A filter /ivy/error means that /
ivy/bla/ivy/error/test is also not allowed (because it’s a part of the URL).

Figure 5.2. IIS Request Filter Config

After changing the configuration restart IIS and check that the URLs are not accessible anymore.

Block URLs in nginx

In the nginx server configuration, URLs can be blocked like this (repeat for the other URLs).

location /ivy/rd {
 deny all;
 return 403;
}

After changing the configuration restart nginx and check that the URLs are not accessible anymore.

https://www.iis.net/configreference/system.webserver/security/requestfiltering
https://www.iis.net/configreference/system.webserver/security/requestfiltering

Security

80

Block URLs on the ivy Engine / Tomcat

Alternatively, URLs can also be blocked directly on the ivy Engine which utilizes and underlying Apache Tomcat for serving
HTTP requests. Open the “web.xml” file in webapps/ivy/WEB-INF/ in a text editor and add the following configuration inside
the <web-app> tag (!) to block partial access to Rich Dialogs:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>
 ...
 <security-constraint>
 <display-name>Restrict access to Richdialog URLs</display-name>
 <web-resource-collection>
 <web-resource-name>Restricted RichDialog</web-resource-name>
 <url-pattern>/rd/*</url-pattern>
 </web-resource-collection>
 <auth-constraint />
 </security-constraint>
 ...
</web-app>

After changing the configuration restart the ivy Engine and check that the URLs are not accessible anymore.

Tip

If the URLs are still accessible after blocking them in the web.xml make sure that you didn't include the servlet
path (/ivy) in the URL pattern.

HTTPS
It is strongly recommended to protect the connection to the server with HTTPS, especially when transferring sensitive data
(like passwords). HTTPS connections should be configured on the front-end server. Only current TLS/SSL settings (e.g. no
SSLv3 or TLSv1.0) and only up-to-date systems (e.g. no OpenSSL with Heartbleed) should be used. Consult the manual of
your front-end server for a secure HTTPS setup.

Remarks
• Current browsers mark login forms with password fields over HTTP as insecure.

• Enable the secure flag on session cookies when using HTTPS (in the “web.xml”).

• Enable HTTP Strict Transport Security (HSTS) (with the httpHeaderSecurity filter in the “web.xml” or in the configuration
of the front-end server).

Axon.ivy Engine

Disable not required features
If certain features of the Engine are not required by the deployed projects, those features should be disabled.

Optional features

The following features can be disabled if they are not used by the deployed projects:

ivy.webserver.yaml with all optional features disabled

REST:

Security

81

 # If none of the deployed projects provide REST APIs it is also possible to disable the whole REST servlet
 Enabled: false

 # REST resources for the mobile app under '{application}/api/workflow'
 MobileWorkflow:
 # If the Mobile Workflow REST API is not used on your engine (e.g. by the Axon.ivy Mobile App) you can disable it
 API: false

If the Mobile Offline Dialogs are not used on your engine (most of the time) you can disable them
OfflineDialogs:
 Enabled: false

Security Features

The following features impact the security and have a good default (depending on what's better for security) and should not
be changed.

These feature flags are set in the “ivy.yaml” and “ivy.webserver.yaml”.

• Errors.ShowDetailsToEndUsers should always be set to false, so that no exception details are shown to end users.

• WebServer.REST.CSRF.Protection should always be set to true, so that the REST APIs require a Cross-Site
Request Forgery (CSRF) token by default.

• WebServer.RenewSessionIdOnLogin should always be set to true, so that the session id is renewed after Login.

Only grant ivy Permissions where required
Only grant ivy permissions where the users or roles require them. Especially don’t grant all permissions to everybody. Favor
role-based permissions over user-based ones.

Security issues in the Axon.ivy Engine
If a security issue was found in the Axon.ivy Engine or Designer it is visible in the Release Notes, annotated with an
exclamation mark (!):

• ! - Critical: We strongly recommend to install this hotfix because it fixes a critical security issue!

• * - Recommended: We recommend to install this hotfix because it fixes a stability issue.

• + - Suggested/Optional: We only recommend to install this hotfix if you are running into the described issue.

Update the engine if your engine version is affected by an issue and it cannot be mitigated by a workaround.

82

Chapter 6. Integration

Introduction
We recommend to run Axon.ivy Engine behind a web front-end server (Apache httpd, Microsoft IIS, Reverse Proxy, Web
Application Firewall, etc.).

In those cases the web front-end server receives all requests from the clients and forwards them to the Axon.ivy Engine which
handles them. This allows to integrate the processes and applications that you are running on an Axon.ivy Engine into a
company or web portal. Some web front-end server provide Single Sign On (SSO) functionality. The front-end server then
is responsible to identify the user (either automatically or by login). After that the user is able to operate on all web sites that
are integrated into the web front-end server.

Figure 6.1. Web Front-End Server

The integration for Apache httpd and Microsoft IIS is technically solved by using Tomcat Connectors. More technical details
about those connectors can be found on the Apache Tomcat web site.

Integration Directory

All necessary files that you need to integrate an Axon.ivy Engine into a Web Server can be found in the following directories
inside the Axon.ivy Engine installation directory:

• Apache HTTP Server for Windows (x64): misc/apache/

• Apache HTTP Server for Linux (x64): misc/apache/

• IIS for Windows (x64): misc/iis/

The directory that matches the platform and webserver where you plan to integrate the Axon.ivy Engine will be called
integration directory in this chapter.

The integration binaries for Linux are not delivered with the Axon.ivy Engine as it is best practice to use the Tomcat Connector
binaries that are provided by the Linux distribution. See “Linux example configuration”

http://tomcat.apache.org

Integration

83

External base URL
Once Axon.ivy is served to clients via a front-end webserver, you must make the front-end webserver known as shown in
the “ivy.webserver.yaml”. Axon.ivy will use this configuration to create absolute links that are accessible to clients (e.g. for
links in task mails).

sample ivy.yaml that configures an front-end webserver for clients.
https://acme.com:443/ will be the absolute URL prefix for links generated by Axon.ivy
Frontend:
 HostName: acme.com
 Port: 443
 Protocol: https

Apache Integration
An Apache HTTP Server 2.x can be configured as web frontend of an Axon.ivy Engine. The communication between the
Apache HTTP Server and the Tomcat from Axon.ivy is possible by using the Apache Tomcat Connector.

Windows example configuration
1. If your Apache HTTP Server is not running on the same host as the Axon.ivy Engine then the integration directory

content must be copied to the host where your Apache HTTP Server is running.

• Copy the mod_jk binaries and the sample configuration files from the directory that matches your OS in [[Axon.ivy
Engine install dir]]/misc/apache to the Apache Host under C:\Program Files\ivy

All next steps have to be done on the host where the Apache HTTP Server is running on.

2. Include the copied jk_module configuration in the [[Apache Install Dir]]/conf/httpd.conf. Add the following lines to
do so:

Axon.ivy Engine Integration
Include C:/Program Files/ivy/mod_jk.conf

3. Replace all <path> strings in the file C:\Program Files\ivy\mod_jk.conf so that the file reflects your local paths:

Load mod_jk module
LoadModule jk_module c:/program files/ivy/mod_jk-1.2.42-httpd-2.4.so
Where to find workers.properties
JkWorkersFile c:/program files/ivy/workers.properties
Where to put jk shared memory
JkShmFile c:/program files/ivy/mod_jk.shm
Where to put jk logs
JkLogFile c:/program files/ivy/mod_jk.log
Set the jk log level [debug/error/info]
JkLogLevel info
Select the timestamp log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

Mount the uri "/ivy/*" to the worker AxonIvyEngine.
JkMount /ivy/* AxonIvyEngine

4. If you have configured virtual hosts in your apache configuration you have to map the URI /ivy/* in all virtual host
you want to integrate Axon.ivy Engine into. This can be done by copying the following line from the mod_jk.conf file
to the appropriate virtual host definitions:

JkMount /ivy/* AxonIvyEngine

Copy this to the appropriate virtual host definitions, e.g.:

http://tomcat.apache.org/connectors-doc/index.html

Integration

84

<VirtualHost *:80>
 ServerAdmin webmaster@ivy.soreco.wan
 DocumentRoot "C:/Program Files (x86)/Apache Software Foundation/Apache2.2/docs/ivy.soreco.wan"
 ServerName ivy.soreco.wan
 ServerAlias www.ivy.soreco.wan
 ErrorLog "logs/ivy.soreco.wan-error.log"
 CustomLog "logs/ivy.soreco.wan-access.log" common
 JkMount /ivy/* AxonIvyEngine
</VirtualHost>

5. Define the hostname and port, where the Axon.ivy Engine is running. Adjust the content of the file C:\Program Files
\ivy\worker.properties to do so.

worker.list=AxonIvyEngine
worker.AxonIvyEngine.type=ajp13
worker.AxonIvyEngine.port=8009
worker.AxonIvyEngine.host=ivyserver

6. Update the external base URL as shown in the “ivy.webserver.yaml”

7. Restart the Apache HTTP Server and the Axon.ivy overview page should be accessible under http://apacheHostName/ivy

Linux example configuration
Within this example an Apache HTTP Server is configured so that it can connect to the Tomcat of an Axon.ivy Engine. The
configuration step descriptions are generic and can be used under any Linux distribution. But the concrete examples assume
that an Ubuntu distribution is installed as Operating System.

1. Install the latest Tomcat Connector (mod_JK) by console.

sudo apt install apache2 libapache2-mod-jk

2. Enable the new module

sudo a2enmod jk

3. Update the worker.properties file according to the examples in the [[Axon.ivy Engine install path]]/misc/apache/. The
following example content would connect to an Axon.ivy Engine on the host "ivyserver" under the default AJP port 8009.

/etc/libapache2-mod-jk/worker.properties:

worker.list=AxonIvyEngine
worker.AxonIvyEngine.type=ajp13
worker.AxonIvyEngine.port=8009
worker.AxonIvyEngine.host=ivyserver

4. Mount the Axon.ivy Engine in the virtual host definition of the Apache HTTP Server. The context URI must match the
context of the Axon.ivy Engine.

/etc/apache2/sites-available/default:

<VirtualHost *:80>
 ...
 #Mounts the URI /ivy/* to the worker AxonIvyEngine
 JkMount /ivy/* AxonIvyEngine
</VirtualHost>

Tip

If the Apache HTTP Server is used as Load Balancer for a clustered Axon.ivy Engine installation, the
JK Status Manager can be used to display debugging informations. The Manager is accessible when it is
mounted in the virtual host definition configuration.

Integration

85

<VirtualHost *:80>
 ...
 #Mounts the URI /jkmanager/* to the JK Status Manager interface.
 JkMount /jkmanager/* jkstatus
</VirtualHost>

5. Update the external base URL as shown in the “ivy.webserver.yaml”

6. Restart the Apache HTTP Server and the Axon.ivy overview page should be accessible under http://apacheHostName/ivy

Change context URI /ivy/

You might like to make the Axon.ivy engine accessible under a custom context URI other than /ivy.

1. Change the context name of Axon.ivy as shown in the “ivy.webserver.yaml”

sample ivy.yaml that configures a different context:
so Axon.ivy will be accessible trough http://localhost/workflow
WebServer.IvyContextName: workflow

2. Change the context name of the Apache HTTP Server by changing the last line of the mod_jk.conf configuration file:

#JkMount /ivy/* AxonIvyEngine
JkMount /workflow/* AxonIvyEngine

3. If you have a virtual host configuration, the JkMount command with the new context URI must also be applied to the
virtual host definition:

<VirtualHost *:80>
 ...
 JkMount /workflow/* AxonIvyEngine
</VirtualHost>

Microsoft IIS Integration
Important

To successfully integrate Axon.ivy Engine into Microsoft Internet Information Server (IIS) it is important that
you exactly execute all the integration steps described below. If the integration does not work verify each
integration step again.

IIS 8 (Windows Server 2012)

Note

There is a batch script autoconfig.bat in the folder misc\iis of your engine installation, which installs and
configures the IIS automatically on a Windows 2012 Server.

If you are setting up a new IIS Server you can use this script instead of following the instructions below.

1. If your Microsoft Internet Information Server is not running on the same host as the Axon.ivy Engine then copy the
integration directory to the host where your IIS is running. All next steps have to be done on the host the IIS is running on.

2. Allow the user groups Authenticated Users and IUSR to have Full control permission on the integration
directory.

Integration

86

3. Install Features

Note

Instead of installing the features manually you can run the following command which ensures that all
necessary IIS Features are installed:

PKGMGR.EXE /iu:IIS-WebServerRole;IIS-WebServer;IIS-CommonHttpFeatures;IIS-
StaticContent;IIS-DefaultDocument;IIS-DirectoryBrowsing;IIS-HttpErrors;IIS-
ApplicationDevelopment;IIS-CGI;IIS-ISAPIExtensions;IIS-ISAPIFilter;IIS-
HealthAndDiagnostics;IIS-HttpLogging;IIS-RequestMonitor;IIS-Security;IIS-
WindowsAuthentication;IIS-RequestFiltering;IIS-Performance;IIS-HttpCompressionStatic;IIS-
WebServerManagementTools;IIS-ManagementScriptingTools;IIS-ManagementService

Open the Server Manager (Start > Server Manager). Select the Web Server (IIS). Validate that under the Role
Services the services CGI, ISAPI Extensions and ISAPI Filters are installed. If this is not the case select
the menu Add Role Services to install the missing services.

Integration

87

4. Feature delegation

Note

The following command automatically sets the feature delegation:

powershell -ExecutionPolicy unrestricted -ImportSystemModules Set-WebConfiguration //
System.webServer/handlers -metadata overrideMode -value Allow -PSPath IIS:/

Open the Internet Information Services (IIS) Manager (Start > Internet Information Services (IIS) Manager). In the
Connections pane select the node that represent your machine. In the Feature View open the Feature
Delegation entry.

Integration

88

Ensure that the Delegation of the Handler Mappings are set to Read/Write. Use the menu Read/Write
on the Actions pane to change the Delegation to Read/Write.

5. Virtual ivy directory

Note

The following commands automatically creates the virtual directory ivy:

set path=%path%;%windir%\system32\inetsrv

appcmd.exe add vdir /app.name:"Default Web Site/" /path:/ivy /physicalPath:<replace this with
the path to the integration directory>

Integration

89

In the Connections pane navigate to the Web Site you want integrate the Axon.ivy Engine into. Use the context
menu Add Virtual Directory ... of the Web Site to add a new Virtual Directory. A dialog opens. Configure
the Alias of the Virtual Directory with ivy and the Physical path of the Virtual Directory with the path of the
integration directory. Click OK to close the dialog and create the Virtual Directory:

6. Handler Mapping Permissions

Note

The following command automatically sets the feature permission for the ivy virtual directory:

appcmd.exe set config "Default Web Site/ivy" /section:system.webServer/handlers /
accessPolicy:Read,Write,Execute

Select the new created Virtual Directory ivy in the Connections pane and open the Handler Mappings entry
in the Feature View:

In the Actions pane select the Edit Feature Permissions ... menu:

Integration

90

On the Edit Feature Permission dialog select all three permission and click OK:

7. Configure Error Page

Note

The following command automatically configures that the detailed error page of the Engine is shown:

appcmd.exe set config "Default Web Site/ivy" /section:system.webServer/httpErrors /
errorMode:Detailed

Tip

See the “web.xml” for more information about this configuration.

Select the new created Virtual Directory ivy in the Connections pane and open the Error Pages entry in the
Feature View:

Integration

91

Right click and select Edit Feature Settings... or select the same from the Actions pane (in the right
hand side)

Select the Detailed errors radio button and click on OK

8. Install ISAPI filter

Note

The following command automatically adds the ISAPI Filter:

appcmd.exe set config /section:isapiFilters /+[@start,name='Tomcat',path='<replace this with the
path to the integration directory>\isapi_redirect-1.2.42.dll']

Select the Web Site in the Connections pane and open the ISAPI Filters entry in the Feature View:

In the Actions pane select the Add ... menu:

Integration

92

On the Add ISAPI Filter dialog configure the Filter name with Axon.ivy Engine and the Executable
with the path of the isapi_redirect-1.2.42.dll located in the integration directory. Click OK to add the ISAPI Filter:

9. Change ISAPI filter restriction

Note

The following command automatically adds the ISAPI Restriction:

appcmd.exe set config /section:isapiCgiRestriction /+[@start,description='Tomcat',path='<replace
this with the path to the integration directory>\isapi_redirect-1.2.42.dll',allowed='true']

In the Connections pane select the node that represent your machine and open the ISAPI and CGI
Restrictions entry in the Features View:

Integration

93

In the Actions pane select the Add ... menu:

On the Add ISAPI or CGI Restriction dialog configure the ISAPI or CGI path with the path of the
isapi_redirect-1.2.42.dll located in the integration directory. As Description use Axon.ivy Engine. Select the
Allow extension path to execute check box. Click OK to add the ISAPI or CGI Restriction:

Integration

94

10. If your Microsoft Internet Information Server is not running on the same host as the Axon.ivy Engine or if you have
changed the AJP port of the Axon.ivy Engine then open the file worker.properties inside the integration directory in a
text editor. Change the following line if you have changed the AJP port to another value than 8009:

worker.AxonIvyEngine.port=8009

Change the value localhost in the following line to the host where your Axon.ivy Engine is running if your Microsoft
Internet Information Server is not running on the same host as the Axon.ivy Engine:

worker.AxonIvyEngine.host=localhost

11. Update the external base URL as shown in the “ivy.webserver.yaml”

12. Check if the integration is working by opening a web browser on the address http://<your host>/ivy/

Change context URI /ivy/
You might like to make the Axon.ivy engine accessible under a custom context URI other than /ivy.

1. Change the context name of Axon.ivy as shown in the “ivy.webserver.yaml”

sample ivy.yaml that configures a different context:
so Axon.ivy will be accessible trough http://localhost/workflow
WebServer.IvyContextName: workflow

2. Change the context name of the Microsoft IIS by changing the last line of the uriworkermap.properties configuration file:

#/ivy/* AxonIvyEngine
/workflow/*=AxonIvyEngine

Access multiple Axon.ivy Engines through one IIS
Multiple Axon.ivy Engine instances can be accessed through a single IIS server. This is especially useful if multiple Axon.ivy
versions must be accessible during a migration phase. The following explanation shows a solution for the scenario, where a
legacy Xpert.ivy 3.9 Server and an Axon.ivy 5.x Engine must be accessible through a single IIS host.

1. Make the newer Axon.ivy Engine accessible through the IIS as if only one engine would be behind the IIS. For detailed
instructions follow “Microsoft IIS Integration”.

In our scenario the integration directory from the Axon.ivy 5.x Engine was used to make the engine instance accessible
under http://localhost/ivy.

2. The contexts of the Axon.ivy Engines must be unique. By default the context is set to /ivy/ . If different versions of
ivy engines are accessed from the same IIS host, it's useful to change the contexts so that it matches the ivy version. For
detailed explanation see “Change context URI /ivy/”

In our scenario the context URI of the Axon.ivy 5.x Engine was changed to /ivy5/ and the Xpert.ivy 3.9 Server kept
his default context /ivy/.

3. All Axon.ivy Engines, which are accessed from the same IIS, must listen on a different port for AJP communication.
Therefore the AJP port must be changed. This can be configured as shown in the “ivy.webserver.yaml”.

In our scenario the AJP port of the Axon.ivy 7.x Engine was changed to 8010 and the Xpert.ivy 3.9 Server kept his
default AJP port 8009.

ivy.yaml with AJP enabled on 8010
AJP:
 Enabled: true
 Port: 8010

Integration

95

4. The Axon.ivy Engines must be declared in the worker.properties file of the integration directory. It's important that each
worker has a unique name and that they are listed in the worker.list property.

In our scenario the worker.properties looks as follows:

worker.XpertIvyServer3x.type=ajp13
worker.XpertIvyServer3x.port=8009
worker.XpertIvyServer3x.host=ivyhostname39

worker.AxonIvyEngine5x.type=ajp13
worker.AxonIvyEngine5x.port=8010
worker.AxonIvyEngine5x.host=ivyhostname50

worker.list=XpertIvyServer3x,AxonIvyEngine5x

5. The contexts of the Axon.ivy Engines must be registered in the uriworkermap.properties file of the integration directory.

In our scenario we make Axon.ivy 5.x available under http://localhost/ivy5/ and Xpert.ivy 3.9 under
http://localhost/ivy. So the uriworkermap.properties file looks as follows:

/ivy/*=XpertIvyServer3x
/ivy5/*=AxonIvyEngine5x

Single Sign On

Axon.ivy Engine supports single sign on in Windows environments. The following preconditions must be fulfilled for single
sign on:

• The application on the Axon.ivy Engine must use Active Directory Security System

• The Axon.ivy Engine must be integrated into a Microsoft Internet Information Server (IIS)

IIS 8 (Windows Server 2012)

Note

There is a batch script autoconfigSSO.bat in the folder misc\iis of your engine installation. This script
automatically sets up SSO on a Windows 2012 Server.

If you are setting up a new IIS Server you can use this script instead of following the instructions below.

1. Install Windows Authentication

Note

The following command automatically installs the Windows Authentication:

PKGMGR.EXE /iu:IIS-WindowsAuthentication

Open the Server Manager (Start > Server Manager). Select the Web Server (IIS). Validate that under the Role
Services the service Window Authentication is installed. If this is not the case select the menu Add Role
Services to install the missing service.

Integration

96

2. Deactivate Anonymous Authentication

Note

The following command automatically deactivates the Anonymous Authentication:

set path=%path%;%windir%\system32\inetsrv

appcmd.exe set config "Default Web Site/ivy" -section:system.webServer/security/authentication/
anonymousAuthentication /enabled:"False" /commit:apphost

Open the Internet Information Services (IIS) Manager (Start > Internet Information Services (IIS) Manager). In the
Connections pane select the ivy Virtual Directory node. In the Feature View open the Authentication
entry. Select the Windows Authentication and use the menu Enable in the Actions pane to enable Windows
Authentication.

Make sure that all other authentication modes such as Anonymous Authentication or Digest
Authentication are disabled, otherwise IIS will use those authentication modes and Single Sign On will not work.

Integration

97

3. Activate Windows Authentication

Note

The following command automatically activates the Windows Authentication:

appcmd.exe set config "Default Web Site/ivy" -section:system.webServer/security/authentication/
windowsAuthentication /enabled:"True" /-"providers.[value='Negotiate']" /commit:apphost

Remove all providers expect NTLM from Windows Authentication, otherwise Single Sign On may not work with the
RIA clients.

Troubleshooting

https://answers.axonivy.com/tags/ajp/

Basic Authentication
In the following situations Basic Authentication is required:

• to use the Axon.ivy Mobile App

• to provide REST services which require authentication

IIS 8 (Windows Server 2012)

Note

There is a batch script autoconfigBasicAuth.bat in the folder misc\iis of your engine installation. This script
automatically sets up Basic Authentication on a Windows 2012 Server.

If you are setting up a new IIS Server you can use this script instead of following the instructions below.

1. Install Basic Authentication

Note

The following command automatically installs Basic Authentication:

https://answers.axonivy.com/tags/ajp/

Integration

98

PKGMGR.EXE /iu:IIS-BasicAuthentication

Open the Server Manager (Start > Server Manager). Select the Web Server (IIS). Validate that under the Role
Services the service Basic Authentication is installed. If this is not the case select the menu Add Role
Services to install the missing service.

2. Activate Basic Authentication

Note

The following command automatically activates the Basic Authentication:

set path=%path%;%windir%\system32\inetsrv

appcmd.exe set config "Default Web Site/ivy" -section:system.webServer/security/authentication/
basicAuthentication /enabled:true /commit:apphost

Open the Internet Information Services (IIS) Manager (Start > Internet Information Services (IIS) Manager). In the
Connections pane select the ivy Virtual Directory node. In the Feature View open the Authentication
entry. Select the Basic Authentication and use the menu Enable in the Actions pane to enable Basic
Authentication.

Integration

99

Error Handling
If the engine is running behind an IIS web server and an error occurs on the Engine IIS shows its own error page and hides
the error page coming from the Engine. This is the default IIS behavior.

The Axon.ivy IIS integration script configures the IIS to show the detailed error page of the Engine (see 'Errors' in “ivy.yaml”).
IIS can be reset to its default behavior (e.g. because of security reasons) with the following steps:

1. Open the IIS manager

2. Select the virtual directory ivy and on its Features View, double click on Error Pages

3. Right click and select the Edit Feature Settings... or select the same from the Actions pane (on the right
hand side)

4. Select the “Detailed errors for local requests ...” radio button and click OK.

Axon.ivy Cluster Integration
Axon.ivy Engine Enterprise Edition (Cluster) works with sticky sessions. This means that the load balancer must forward all
requests from a session to the same cluster node. Of course if a cluster node is no longer available then the request can be sent
to another cluster node. Note, that this will cause that the user gets a new session and he loses his current work.

Load Balancing with Tomcat connector (IIS, Apache)
The Tomcat connector can be configured to act as a load balancer for multiple Axon.ivy Engine Enterprise Edition nodes. The
load balancer and the cluster nodes can be configured in the workers.properties file that is located in the integration directory.
An example load balancer configuration can be found in the file cluster_loadbancer_workers.properties. In this file one
worker is configured called AxonIvyEngine that is a load balance worker (type=lb). The property balance_workers
of the AxonIvyEngine worker defines the workers between which the load balance worker will balance the load. Here
one worker per each Axon.ivy Engine Node should be configured. In the example file three workers are configured
AxonIvyEngineNode1, AxonIvyEngineNode2 and AxonIvyEngineNode3.

The node workers are similar to a normal standalone worker. You can use the attributes hostname and port as explained
above. Additionally they have two extra attributes called lbfactor and route. With the lbfactor attribute you can
influence how the load balancer distributes the load to the workers. The higher the lbfactor of a worker relative to the
other workers is the more load the worker gets.

Integration

100

The route attribute is necessary for realizing sticky sessions. An Axon.ivy Engine Enterprise Edition will only work
correctly, if the load balancer sends all request of the same http session to the same node (sticky sessions). To support this
requirement, each Axon.ivy Engine Enterprise Edition node will add a special identifier called jvm route to the http session
identifier. The jvm route identifier is calculated from the host name and the Local Cluster Node Identifier. The route
attribute configured on a node worker must be equal with the jvm route of the node:

worker.AxonIvyEngineNode1.route=<JVM route identifier of Node 1>

worker.AxonIvyEngineNode2.route=<JVM route identifier of Node 2>

The JVM route identifier of a cluster node can be found on the cluster node detail page for an Axon.ivy Cluster Node. This
information can be retrieved as follows:

1. Using a web browser, navigate to the main page (http://<host>:<port>/ivy) of an Axon.ivy Engine installation.

2. Select the Cluster link in the page header.

3. In the appearing list of cluster nodes press the name of a cluster node to see it's details.

Figure 6.2. Axon.ivy Cluster Node Details page

More technical details about load balancing and sticky sessions can be found on the Apache Tomcat web site.

Example

Let's assume that we have an Axon.ivy Engine Enterprise Edition with two Cluster Nodes. Node 1 is installed on host
ivynode1 and the AJP port is configured to 8009. Node 2 is installed on host ivynode2 and the AJP port is configured to
8010. ivynode1 is a new machine with a lot of power. ivynode2 is an old machine and we want that ivynode1 is working
twice as hard as ivynode2. The jvm route of the nodes are ivynode1.soreco.ch and ivynode2.soreco.ch.

The workers.properties file must then look like this:

worker.list=XIvy

Load Balanced Cluster Worker
worker.AxonIvyEngine.type=lb
worker.AxonIvyEngine.balance_workers=AxonIvyEngineNode1,AxonIvyEngineNode2

1st Axon.ivy Engine Cluster Node
worker.AxonIvyEngineNode1.type=ajp13
worker.AxonIvyEngineNode1.port=8009
worker.AxonIvyEngineNode1.host=ivynode1
worker.AxonIvyEngineNode1.route=ivynode1.soreco.ch
worker.AxonIvyEngineNode1.lbfactor=2

http://tomcat.apache.org

Integration

101

2nd Axon.ivy Engine Cluster Node
worker.AxonIvyEngineNode2.type=ajp13
worker.AxonIvyEngineNode2.port=8010
worker.AxonIvyEngineNode2.host=ivynode2
worker.AxonIvyEngineNode2.route=ivynode2.soreco.ch
worker.AxonIvyEngineNode2.lbfactor=1

Load Balancing with other Load Balancer Products
As described above the load balancer must ensure that all requests from the same user session is forwarded to the same cluster
node. This can be done by configuring the load balancer so that all requests sent by one client IP address is always forwarded
to the same cluster node (IP based stickiness). Another possible configuration is to use the Axon.ivy Session Id to provide
session stickiness. The session id is provided by Axon.ivy Engine Enterprise Edition with two different methods. Either as
HTTP session cookie with the name JSESSIONID or at the end of request URLs as ;jsessionid= parameter. The load
balancer must be able to read the session id with both methods otherwise RIA clients will not work correctly.

Warning

Some load balancer provide session stickiness using their own HTTP session cookie. If you use this method
then RIA clients will fail to start.

Web Application Firewall
A web application firewall (WAF) or web shield is a firewall which protects web applications against attacks over the HTTP
protocol. Combined with an Identity and Access Management (IAM) System it also protects against unauthorized access and
supports single sign on (SSO).

Single Sign On
Most WAF or IAM systems allow to configure a way how the user name of the identified user is transmitted to the web
applications. With Axon.ivy Engine a typical system landscape will look like this:

Figure 6.3. Single Sign On Infrastructure using a Web Application Firewall, Identity and Access
Management and Active Directory

Integration

102

The only available access point must be the WAF. Any traffic has to be routed over it. The WAF tries to protect the web
application behind it (e.g. Axon.ivy Engine) from attacks. The WAF uses the IAM to identify users and to protect certain
resources from unauthorized access. The IAM itself may use a directory server like Microsoft Active Directory to know users.
The WAF can be configured to provide the name of the identified user either as HTTP header or HTTP cookie to the web
application (Axon.ivy Engine).

On the other side Axon.ivy Engine provides a Valve that reads the user name from a HTTP header. If Axon.ivy Engine knows
the user it automatically authenticates the user to the current Axon.ivy Engine session. This works best if Axon.ivy Engine
also uses a directory server like Microsoft Active Directory to synchronize users. The Valve that reads the user name from
a HTTP header is disabled by default. To enable it, open the file “context.xml” in the [engineDir]/webapps/ivy/META-INF
directory and uncomment the following line:

<Valve className="ch.ivyteam.ivy.webserver.security.SingleSignOnValve" userNameHeader="user"/>

The attribute userNameHeader can be used to configure the HTTP header that should be read.

Warning

If you activate this Valve you must ensure that the Axon.ivy Engine cannot be accessed directly. All traffic
must be routed over the WAF. Otherwise, an attacker could simple send a valid user name as header in a HTTP
request and immediately has access bypassing the authentication!

Instead of sending the plain user name in a HTTP header there are multiple other ways and technologies (SAML token,
Kerberos, etc.) how the WAF can transmit the current user identity to the web applications. You can support this cases by
registering your own Valve in the “context.xml” file. Your value reads the current user identity from the request and puts a user
principal object with the user name to it. Axon.ivy Engine will check if a user principal is set on a request and automatically
searches the user and authenticates it. The code of your valve can look like this:

import java.io.IOException;
import java.security.Principal;

import javax.servlet.ServletException;

import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;
import org.apache.catalina.valves.ValveBase;
import org.apache.commons.lang3.StringUtils;

public class AuthValve extends ValveBase
{
 @Override
 public void invoke(Request request, Response response) throws IOException, ServletException
 {
 String userName = getUserNameFromRequest(request);
 if (StringUtils.isNotBlank(userName))
 {
 Principal userPrincipal = createUserPrincipalWith(userName);
 request.setUserPrincipal(userPrincipal);
 }
 getNext().invoke(request, response);
 }

 /**
 * Finds out which user was authenticated by an external instance
 * @param request
 * @return user name
 */
 private String getUserNameFromRequest(Request request)
 {

Integration

103

 // Example implementation:
 // Gets the user name from the HTTP Header field User.
 // Has to be changed depending on the protocol or product that you are using
 String userName = request.getHeader("User");
 return userName;
 }

 private Principal createUserPrincipalWith(String userName)
 {
 return new UserPrincipal(userName);
 }

 private static class UserPrincipal implements Principal
 {
 private String userName;

 private UserPrincipal(String userName)
 {
 this.userName = userName;
 }

 @Override
 public String getName()
 {
 return userName;
 }
 }
}

The method getUserNameFromRequest depends on the technology the WAF sends the user identity.

104

Chapter 7. Administration
Deployment

Bring your processes to life by deploying them on an Axon.ivy engine. Deployment simply means to install an Axon.ivy
project on an Axon.ivy engine. Our file based deployment mechanism makes the deployment very easy, just by dropping
the file at the right place. This mechanism is perfectly suitable for a CI/CD pipeline and forms the basis for the deployment
feature of our maven plugin.

1. Get a prepared ivy project from your developer.

2. Deploy the project by simply dropping the file in the deployment directory.

3. Check the result of the deployment on the server info page.

Prepare
Before deployment, the Axon.ivy project must be available as ivy-archive (IAR) or packed as a zip-archive (ZIP). It is also
possible to pack multiple Axon.ivy projects in one single zip-archive. All project dependencies must be resolved, either already
installed in the application or part of the deployment.

We recommend to build a zip-archive, which contains all projects of an application.

Figure 7.1. Sample full application zip-archive

You are able to configure the application within a full application zip-archive. Also, proper versioning is important during
deployment.

Deploying
Drop the file in the deployment directory, the deployment will be started immediately if the Axon.ivy Engine is running.
Otherwise, the deployment is executed when the engine is starting.

There are subdirectories in the deployment directory for each application. The project can be copied to the corresponding
subdirectory. It is also possible to create a subdirectory manually. In this case a new application will be created. Alternatively,
the project can also be placed in the deployment directory itself. It is then deployed into the application with the same name
as the filename.

If you want to influence the deployment behavior, you can do this with deployment options.

Check the results
Go to the server info page, which is by default http://localhost:8080/ivy. You should see now your new processes available. If
you think there is missing something you better check the deployment logs, which can be found in the same directory where
you have dropped the deployment file.

configuration.html#ref_deploy
http://localhost:8080/ivy

Administration

105

File suffix Description

.deployed Last deployed file to the engine in case of a successful deployment

.notDeployed Last not deployed file to the engine in case of error while deployment

.deploymentLog Contains the log output which is written during the deployment

.deploymentError Contains the error cause and is only written when the deployment fails

Table 7.1. Deployment marker files

Advanced Deployment
To fully automate your CI/CD pipeline, you may want to further configure your target application of your deployment and
also influence the deployment behavior.

Configure Application

If you are deploying a full application zip-archive you can optionally add an “app.yaml” in the root of your zip-archive, which
contains the configuration of the application.

sample app.yaml which can be part of the full application zip-archive
SecuritySystem: ActiveDirectoryOfMyCompany
EMailNotification:
 DailySummaryOn: monday, tuesday, wednesday, thursday, friday
 OnNewTasks: true
StandardProcess:
 DefaultPages: ch.ivyteam.ivy.project.portal:portalTemplate
 MailNotification: ch.ivyteam.ivy.project.portal:portalTemplates

Versioning

It is highly recommended that you increase the version of your project each time you want to deploy a new version of your
project on the engine. This ensures that you will not break currently running cases, and you have the possibility to go back
to the previous version if the new version does not work as expected.

Even though overwriting an already deployed process model version with running cases is possible. It is at your own risk and
should only be done if you are aware of the possible consequences and ready to accept them.

Deployment Options

With deployment options you can influence the deployment behavior:

Example of a deployment options file using YAML format.
See http://axonivy.github.io/project-build-plugin/release/deploy-to-engine-mojo.html for
more information about deployment options parameters.
All parameters are set to their default values and listed in [brackets].

Flag indicating if project test users should be deployed to the engine.
deployTestUsers: false # [false], true

Defines how project deployment should affect engine configuration.
configuration:
 overwrite: false # [false], true
 cleanup: DISABLED # [DISABLED], REMOVE_UNUSED, REMOVE_ALL

Deployment target settings.
target:

Administration

106

 version: AUTO # [AUTO], RELEASED, (version values, e.g. 2.5 or (2.0,3.0])
 state: ACTIVE_AND_RELEASED # [ACTIVE_AND_RELEASED], ACTIVE, INACTIVE
 fileFormat: AUTO # [AUTO], PACKED, EXPANDED

See the Axon.ivy Project Build Plugin deploy documentation for more information about the deployment properties.

There are three distinct locations where you can put your options file:

1. Deployment specific options file - If you want to provide options for a single deployment simply create a file that has
the same prefix as the file you want to deploy with a suffix of .options.yaml. E.g. if the file you want to deploy is
myProject.iar then create an options file that is called myProject.iar.options.yaml. Note, that after the deployment the
myProject.iar.options.yaml file will be removed automatically.

2. Global options file - Create a file called deploy.options.yaml in the deployment directory of an application. This global
options file control all deployments inside the application.

3. Inside the file that you are deploying - Put a deploy.options.yaml file inside your project directory, *.iar or *.zip that
you want to deploy.

If there are multiple options files available, then only the options file with the highest location priority is considered, other
options files will be ignored.

Maven Plugin

The Maven project-build-plugin makes automated continuous deployment to an Axon.ivy Engine possible. The Maven plugin
itself uses the file based deployment capability of the Axon.ivy Engine. This means that the deployment folder must be
available on the same machine on which the build is executed. You may use Windows-Shares or SMB-Configurations.

An Axon.ivy project can be deployed by invoking Maven with the deploy-to-engine goal of the project-build-plugin.
To customize the deployment parameters, consult the goal documentation.

Command line deployment

The deploy-to-engine goal can be execute on the command line. The following example deploys the project
myProject.iar to the application 'Portal' of the Engine location under c:/axonivy/engine:

mvn com.axonivy.ivy.ci:project-build-plugin:7.1.0-SNAPSHOT:deploy-to-engine -Divy.deploy.file=myProject.iar -Divy.deploy.engine.dir=c:/axonviy/engine -Divy.deploy.engine.app=Portal

Build goal execution

To deploy an ivy-archive (IAR) during it's Maven build lifecycle configured an execution which binds the deploy-to-
engine goal to a phase in the projects pom.xml.

The following POM snippet deploys the current project to the application 'Portal' of the Axon.ivy Engine under c:/axonivy/
engine.

<plugin>
 <groupId>com.axonivy.ivy.ci</groupId>
 <artifactId>project-build-plugin</artifactId>
 <extensions>true</extensions>
 <executions>
 <execution>
 <id>deploy.to.engine</id>
 <goals><goal>deploy-to-engine</goal></goals>
 <phase>deploy</phase>
 <configuration>
 <deployToEngineApplication>Portal</deployToEngineApplication>

http://axonivy.github.io/project-build-plugin/release/deploy-to-engine-mojo.html
http://axonivy.github.io/project-build-plugin/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

Administration

107

 <deployEngineDirectory>c:/axonivy/engine</deployEngineDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

Further examples are documented on GitHub in the project-build-examples repository.

Standard Processes
With standard processes you can change the default workflow behaviour by simply providing a custom implementation in
your ivy project.

For example: Once a user has completed a task, he will be redirected to his personal task list. The default task list is workflow
driven and maybe to technical for your end user. With a standard process you could easily provide a branded and use case
driven task list that fits perfectly into your domain.

We distinguish between two types of standard processes:

• “Default Pages” are simple pages like the login page or the task list page.

• “Email Notifications” are mail content creation processes which inform user about new task assignments or daily task
summaries.

Implementation
To customize a standard process you need to do the following:

1. Implement a process with a predefined process start signature in an ivy project. See the following sub chapters for more
information.

2. Deploy the ivy project with the customized standard processes in the application.

3. Finally, the project with the standard processes must be activated in “app.yaml”:

app.yaml located in <application-directory>/app.yaml which actives the portal default processes
To enable these custom processes, the library id of the ivy project must be specified here.
The library id is <group-id>:<project-id> from the ivy project deployment defintion.
StandardProcess:
 DefaultPages: ch.ivyteam.ivy.project.portal:portalTemplate
 MailNotification: ch.ivyteam.ivy.project.portal:portalTemplate

Default Pages
To customize default pages, you must implement processes with a predefined process start signature. Checkout the process
Processes/Workflow/Home in the JsfWorkflowUI which also overrides all types of default pages. The JsfWorkflowUI can be
found in [engineDir]/projects/JsfWorkflowUi.iar.

The following default pages can be customized:

Default Page Process Start Signature

Application Home Page as the
entry page to the application.

DefaultApplicationHomePage()

Task List with all tasks the current
user can work on.

DefaultTaskListPage()

https://github.com/axonivy/project-build-examples

Administration

108

Default Page Process Start Signature

Process Start List with all
processes which the current user can
start.

DefaultProcessStartListPage()

End Page which will be displayed
to the user after a task or process is
completed.

DefaultEndPage(Number endedTaskId)

Login Page which comes up
whenever authentication is needed.

DefaultLoginPage(String originalUrl)

Error Page which visualizes error
on the front end

no signature: globally defined in “web.xml”

Table 7.2. Default Pages

Administration

109

Figure 7.2. Task List provided by JsfWorkflowUI

Email Notifications
To customize the content of the email notification, you must implement processes with a predefined process start
signature. Checkout the processes Processes/NewTaskMailContent and Processes/DailyTaskSummaryMailContent in the

Administration

110

JsfWorkflowUI which also provides standard processes for email notification. The JsfWorkflowUI can be found in
[engineDir]/projects/JsfWorkflowUi.iar.

Mail notifications require a configured mail server and enabled notification settings as described in “Email”.

The following email notifications can be customized:

Email Notification Process Start Signature

New Task page with the new
assigned task. This is done
everytime a new task is created, an
existing task expires or the creator
of an existing tasks changes. These
events affect the user directly, via his
role or his substitution.

MailNotification_NewTask(Number notificationUserId, Number notificationTaskId)

Daily Task Summary page with
all open tasks for the user. This
notification is executed once a day
for each user.

MailNotification_DailyTaskSummary(Number notificationUserId)

Table 7.3. Email Notification

Administration

111

Figure 7.3. New Task Mail provided by JsfWorkflowUI

Administration

112

Implementation hints

• Subject : The <title> html tag is re-used as email subject

• Images : can be referred in the html either from CMS or the file system. These resources will be embedded as mime parts.
External images will not be embedded and the links will not be modified at all.

• Skip : you can avoid the standard mail sending procedure by custom conditions (e.g. do not send mails to technical users).
To do so implement an alternative process flow without displaying any User Dialog or Html Page activity.

• API: some API hints to implement email notification processes:

• get the user you can use ivy.session.getSecurityContext().findUser(notificationUserId)

• get the task you can use ivy.wf.findTask(notificationTaskId)

• get the current open task for a user ivy.wf.findWorkTasks(...)

Miscellaneous

GC Optimization
The GC (Garbage Collection) of Java cleans up the unused memory of the JRE. Normally the GC completes in a few
milliseconds. If it takes longer (and leads to serious issues for running applications) the optimization below can help to
optimize the GC time.

Default GC configuration

By default, the GC strategy is optimized for RIA Applications and an explicit full concurrent GC runs every 10 minutes.

Note

Why a periodical GC is required for RIA Applications?

Normally a GC is triggered in the background when a considerable amount (e.g. 80%) of the available memory
is used. Then the GC cleans up all unused memory so that the application can always address new memory as
required.

Now comes RIA into play. A RIA application creates each UI widget on server- and client-side to share the
UI-state on both sides. To clean this up on both sides the widget must be cleaned first on server-side before it
can be cleaned on the client-side. But with the default GC configuration the memory on server-side will not
be cleaned until a considerable amount of the available memory is used. But the available memory on server-
side is usually considerably higher than on client-side, so this can lead to low memory problems on client side
(OutOfMemoryException).

To prevent this situation Axon.ivy Engine triggers a full concurrent GC every 10 minutes. This cleans up the
memory on server-side and allows the client-side to clean up its memory too.

Optimization for JSF

In JSF applications you only need a Browser on client side. Therefore, no periodical full concurrent GC is required and you
can optimize the GC on low latency.

To change the GC accordingly comment out the following line in the corresponding ilc-file or AxonIvyEngine.conf for Linux:

* GC optimized for JSF
ivy.garbage.collector.options=-XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+CMSClassUnloadingEnabled -XX:+DisableExplicitGC

Administration

113

System Database Encryption
User passwords are stored encrypted in the system database. Passwords of Axon.ivy users are hashed by using the bcrypt
algorithm. Passwords of technical users that are used to communicate with external systems are encrypted using the AES
algorithm. The secret key for the AES algorithm is by default created automatically by using a secure random generator.
However, it is possible to provide an own secret key as follows:

1. Create your own AES secret key and store it in a key store file by using the Java keytool:

keytool -genseckey -alias aes -keyalg AES -keysize 128 -storepass changeit -storetype JCEKS -keystore keystore.jceks

2. Configure the following Java system properties in the launcher configuration:

Java System Property Description

ch.ivyteam.ivy.persistence.keystore.file The path to the key store that holds the AES secret key. E.g.
keystore.jceks.

ch.ivyteam.ivy.persistence.keystore.password The password needed to read the key store file. Default
value changeit.

ch.ivyteam.ivy.persistence.keystore.alias The name of the key to read from the key store file. Default
value aes.

ch.ivyteam.ivy.persistence.keystore.type The type of the key store. Default value JCEKS.

Table 7.4. AES Secret Key System Properties

Warning

If you configure to use an own AES secret key after you have already stored technical passwords for external
system then those passwords can no longer be decrypted and are useless. You have to reconfigure all those
passwords again!

Replacing Java Runtime with newer version
If you want to use profiling tools such as VisualVM it may be required to replace the bundled Java Runtime (JRE) with a
newer one. To do so, just perform the following steps:

1. Download the full Java Development Kit (JDK) that suits best for your OS and Ivy-Installation (a 32 bit Ivy Engine
cannot be run with a 64 bit runtime). It is important that you download the JDK and not the JRE. You will find the JDK
at the Sun/Oracle Java website

2. Install the downloaded JDK on the server (or on any computer with the same OS)

3. Move the whole content of the directory jre in the installation folder of your Axon.ivy Engine to some other folder (to
have a backup).

4. Copy the whole content of the folder jre in the installation directory of the JDK to the jre folder in the installation folder
of your Axon.ivy Engine (the one you moved in the step above)

Warning

Changing the Java Runtime that is packaged with Axon.ivy Engine is not recommended and should only be
done when requested by Axon.ivy support or when required for testing purposes.

https://visualvm.github.io/
http://java.sun.com/javase/downloads/

114

Chapter 8. Monitoring

Logging
Axon.ivy uses a library called Log4j from Apache Foundation to log certain events. The logging configuration file is located
in the {Axon.ivy Install Directory}/configuration directory and is called “log4jconfig.xml”. By default log events are written
to the console and to log files. The log files are written to the {Axon.ivy Install Directory}/logs directory.

Logging type Log level

Console log WARN

File log INFO

Windows Event Log FATAL

Table 8.1. Default settings for logging

The log levels are used as follows:

FATAL This level is used to report problems that may cause the engine not to work correctly.

ERROR This level is used to report problems that something has not worked as expected and may cause that the user gets
an error message on the UI.

WARN This level is used to report problems that have to be solved because it can lead to errors later.

INFO This level is used to report that something was done. (E.g. for example a database call)

DEBUG This level is used to report internal events. Most of these events are only interessting for developers. However, some
of them may also be interessting for troubleshooting.

Feel free to change the logging configuration to your needs.

Log Message Format
A log message looks like the following:

10:19:14.173 INFO [ch.ivyteam.ivy.richdialog.exec.internal.panel.RichDialogPanelImpl] [http-8082-4]
 [application=0, client=127.0.0.1, task=4, pmv=System$Administration$1, session=4, request=Ulc over HTTP POST
 115D746C75FAF428/start1.ivp, executionContext=SYSTEM]
 Can not restore UI state. No user is logged in.

The first entry of a log message is the exact time it was written (10:19:14.173).
Followed by the log level of the message (INFO). Next is the log category
([ch.ivyteam.ivy.richdialog.exec.internal.panel.RichDialogPanelImpl]). Then the name of the
thread in whichs context the log message was written follows ([http-8082-4]). The next section conains a lot of Axon.ivy
context information. For example the user session or the process model version that were active when the log message was
written. The content of the context information can change depending on the context the log message was written. The
following context information exists:

application The identifier of the current application.

client The IP address and maybe the host name of the current web client.

executionContext The security execution context that is used to check permissions. This can be the current session
or SYSTEM if security is disabled.

request Information about the current request is written to the log.

http://logging.apache.org/log4j/1.2/index.html
http://www.apache.org

Monitoring

115

requestId The identifier of the current request. Can be used to filter all messages that are written in the context
of the same request.

pmv The identification string of the current process model version.

processElement The process element that is currently executed.

rd The fully qualified name of the current Rich Dialog.

session The current Axon.ivy session. The identifier of the session and the user name (if a user is logged in).

task The identifier of the current task.

On the next line the message that was logged follows. In case of errors a java exception stack trace may follow on the next lines.

Runtime Log
On the Axon.ivy Designer certain events of processes are logged to the runtime log view. The process designer itself can write
to the runtime log using the ivy.log object. On the Axon.ivy Engine all information written to the runtime log is handled by
Log4j. It is written to the console, to log files and to the Windows Event Log.

The runtime log entries are written to special log categories which names start with runtimelog followed by
the application name, the process model name, and the runtime log category. For example: the category name
runtimelog.app.hrm.user_code represents the runtime log of the application called app, with the process model called hrm
and the runtime log category user_code.

Example

The following xml snip can be added to the Log4j configuration file so that the runtime log of the process model hrm of the
application app is written to its own log file called runtimelog.app.hrm.log:

<!-- Defines a log file called runtimelog.app.hrm.log -->
<appender name="RuntimeLog" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="File" value="${user.dir}/logs/runtimelog.app.hrm.log"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <layout class="org.apache.log4j.IvyLog4jLayout">
 <param name="DateFormat" value="HH:mm:ss"/>
 </layout>
</appender>

<!-- Configures that the log category runtimelog.app.hrm has priority DEBUG and is
 written to the RuntimeLog file -->
<category name="runtimelog.app.hrm" class="ch.ivyteam.log.Logger">
 <appender-ref ref="RuntimeLog"/>
 <priority value="DEBUG"/>
</category>

Request/Performance Logging
If you want to know the time when a request was received from the Axon.ivy Engine and at what time the request processing
of the engine was done, then you use the following log category:

ch.ivyteam.ivy.webserver.internal.PerformanceLogValve

Configuration Example (configuration/“log4jconfig.xml”):

<!-- Configures that the log category
 ch.ivyteam.ivy.webserver.internal.PerformanceLogValve has priority DEBUG -->

Monitoring

116

<category name="ch.ivyteam.ivy.webserver.internal.PerformanceLogValve"
 class="ch.ivyteam.log.Logger">
 <priority value="DEBUG"/>
</category>

The log category logs the entry of a request right after the internal web server has received it. The exit is logged after the
request was processed by the web server. In the exit log message you find the duration of the request in microseconds.

The log level of the these messages is DEBUG. Change the threshold of the appenders to DEBUG so that log messages with
this priority are written to the appender's destination.

Configuration Example (configuration/“log4jconfig.xml”):

<appender name="FileLog" class="org.apache.log4j.DailyRollingFileAppender">
 <param name="Threshold" value="DEBUG"/>
 <param name="File" value="${user.dir}/logs/ivy.log"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <layout class="org.apache.log4j.IvyLog4jLayout">
 <param name="DateFormat" value="HH:mm:ss.SSS"/>
 </layout>
</appender>

If you want to know what the Axon.ivy Engine has done between the entry and exit of the request you can use the context
information requestId which you can find on every log message. A unique request identifier is assigned to every request.
By filtering the log for messages with the same requestId you find out what kind of operations Axon.ivy Engine has done
during the request.

Example:

10:49:40.904 DEBUG [...rformanceLogValve] [http-8081-1] [requestId=43]
 Entry url=http://localhost:8081/ivy/pro/designer/OpenEditor/13224891E742EE17/start4.ivp
 client=0:0:0:0:0:0:0:1 session=null httpsession=C900A5BC35251533DEB5B36E4316EE98
10:49:41.020 INFO [...nEditor.user_code] [http-8081-1] [application=2147483647,
 client=0:0:0:0:0:0:0:1, requestId=43, task=1, pmv=designer$OpenEditor$1, processElement=13224891E742EE17-f26-
t, session=1, request=HTTP GET test.mod/start4.ivp(1.1.0.0), executionContext=1]
 This is my log message
10:49:41.050 INFO [...ner.OpenEditor.db] [Process Extension Thread 1] [application=2147483647,
 client=0:0:0:0:0:0:0:1, requestId=43, task=1, pmv=designer$OpenEditor$1, processElement=13224891E742EE17-f29-
bean, session=1, request=HTTP GET test.mod/start4.ivp(1.1.0.0), executionContext=SYSTEM]
 Execute database statement SELECT * FROM IWA_ACCESSCONTROL
10:49:41.050 INFO [...ner.OpenEditor.db] [Process Extension Thread 1] [application=2147483647,
 client=0:0:0:0:0:0:0:1, requestId=43, task=1, pmv=designer$OpenEditor$1, processElement=13224891E742EE17-f29-
bean, session=1, request=HTTP GET test.mod/start4.ivp(1.1.0.0), executionContext=SYSTEM]
 Executed database statement successfully in 0 milli seconds
10:49:41.100 DEBUG [...rformanceLogValve] [http-8081-1] [requestId=43]
 Exit url=http://localhost:8081/ivy/pro/designer/OpenEditor/13224891E742EE17/start4.ivp
 client=0:0:0:0:0:0:0:1 session=1 httpsession=C900A5BC35251533DEB5B36E4316EE98 duration=194181 us

In the example above you see the log messages when the request with the id 43 has entered and exited the web server. There
was also one user runtime log message written in the same request and one database call that has lasted 0 milliseconds. The
whole request needed 19.418 ms to be processed.

Process Element Performance Statistic and
Analysis

Configure Process Element Performance Statistic on
Axon.ivy Engine

On an Axon.ivy Engine it is possible to dump out performance statistic informations, periodically into a CSV formatted file.
This allows to analyse the performance of the engine and to detect long running and performance intensive process elements
and processes. The file contains detailed informations of each executed process element since the last dump.

Monitoring

117

After activation the informations are collected and written to the log-directory of the Axon.ivy
Engine installation. The file contains the following name: performance_statistic_jjjj-mm-tt_hh-mm-tt.csv (e.g.
performance_statistic_2011-03-15_09-21-05.csv)

Process element performance statistics are not collected by default. They can be enabled in the ProcessEngine section of the
“ivy.yaml” file.

Analyse the Performance Statistic
All time values are in milliseconds. The execution of some process elements are separated in two categories internal and
external.

Internal Category The internal category is used for the execution time in the process engine itself without the external
exection.

External Category The external category is used for execution time in external systems. In the table below the process
elements are listed which use the external category.

Process Element Internal Category External Category

Database Step Parameter-mapping, caching,
output-mapping and ivyScript
execution.

The execution of the SQL
statement on the database
server.

Web Service Call Step Parameter-mapping, caching,
output-mapping and ivyScript
execution.

The execution of the Web
Service on the web server.

E-Mail Step Parameter-mapping The interaction with the Mail-
Server.

Program Interface The execution of the defined
Java-Class.

Table 8.2. Process elements with usage of external category

For each executed process element one entry in the view is created. See the table below which information is available.

Name Description

Entry ID Entry ID, useful to order the entries by its first exection.

Application Application of the process element.

Process Model Process Model of the process element.

PM Version Process Model Version of the process element.

Process Path The path to the process.

Element ID The identifier of the process element.

Element Name The first line of the process element name (display name).

Element Type The type of the process element.

Total Time Total time [ms] of internal and external execution.

Int. Executions Total internal executions of the process element.

Total Int. Time Total internal time [ms] of process engine executions.

Min. Int. Time Minimum internal process engine execution time [ms].

Avg. Int. Time Avarage internal process engine execution time [ms].

Max. Int. Time Maximum internal process engine execution time [ms].

Ext. Executions Total external execution count.

Monitoring

118

Name Description

Total Ext. Time Total external execution time [ms].

Min. Ext. Time Minimum external execution time [ms].

Avg. Ext. Time Average external execution time [ms].

Max. Ext. Time Maximum external execution time [ms].

Table 8.3. Column Description

Tip

To find a process element by its Element ID, use the search dialog Find process or element in the Axon.ivy
Designer. Use menu Axon.ivy > Debug > Find process or element.

Java Management Extensions (JMX)
Java Management Extensions (JMX) is a technology to read and write runtime information from a java processes. This allows
monitoring tools to monitor the state the Axon.ivy Engine, e.g. with VisualVM, Java Mission Control or Nagios. A monitoring
tool that runs on the same machine and with the same user as the Axon.ivy Engine can connect to Axon.ivy Engine without
any additional configuration.

Activate Remote Access
If the Axon.ivy Engine is running under another user or on a remote host than the monitoring tool, then JMX remote access
has to be activated. Remote access is protected by a user name and password of an Axon.ivy Engine Administrator, so all
Axon.ivy Engine Administrator have access.

On Windows: activate remote access by uncommenting the following line in an ivy launch control file *.ilc (See “Windows
Program Launcher Configuration”):

ivy.management.port=9003

On Linux: activate remote access by uncommenting the following line in the “AxonIvyEngine.conf”:

#JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote.port=9003 -Dcom.sun.management.jmxremote.login.config=jmx -Djava.security.auth.login.config=configuration/jaas.config -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.autodiscovery=true"

Auto Discovery (JDP)
Some monitoring tools can auto discover running JMX servers in the network. So that the user does not have to know the
JMX ip and port.

On Windows: Auto discovery is enabled by default if JMX is activated. However, you can disable this feature by
uncommenting the following line in the *.ilc file (See “Windows Program Launcher Configuration”):

ivy.management.autodiscovery=false

On Linux: Auto discovery is enabled in the pre-configured (but uncommented) JAVA_OPT of the “AxonIvyEngine.conf”.
But you can disable it at any time by changing its value to false:

-Dcom.sun.management.jmxremote.autodiscovery=false

Provided MBeans
The Axon.ivy Engine provides performance and management information by a set of MBeans. These allows to monitor
internals of the Axon.ivy Engine. Most monitoring tools provide a user interface to browse the available MBeans. MBeans
are mostly shown in a tree which is built with the information provided in the names of MBeans.

Monitoring

119

Figure 8.1. MBeans Tree of Axon.ivy shown in MBeans Plugin of VisualVM

The names of MBeans provided by Axon.ivy are structured so that the name contains the Application, Process Model, Process
Model Version or Environment where this is reasonable.

Note

Examples of typical Axon.ivy MBean names:

ivy Engine:type=External Web Service,application=MyApplication,environment=Default,name=Echo (43838347ABCD)
ivy Engine:type=Job Manager
ivy Engine:type=Process Start Event Bean,application=MyApplication,pm=MyProcessModel,pmv=1,name="MyStartEventBean (3485471349/start.ivp)"

The name and description of a MBean can be found in its meta information (see the Metadata tab in the MBeans tab of
VisualVM). MBeans provide information through attributes and operations. The description of the attributes and operations
can also be found in its meta information (see too the tool tips in the Attributes and Operations tab of the MBeans tab of
VisualVM).

Warning

Manipulating attribute values or calling operations on MBeans will immediately change the configuration of
your system and can therefore harm your running applications.

If not mentioned otherwise, a manipulation only affects the currently running engine. The manipulation will not
survive a engine restart.

Manipulations that survive a engine restart contain the following text in the description of the attribute or
operation: (Persistent).

Monitoring

120

In addition to the MBeans provided by Axon.ivy some third party libraries included in Axon.ivy provide their own MBeans.
One of them is Apache Tomcat that is used as internal web server. Its MBeans provide information about the handling of
HTTP requests like request count, errors, execution time, sessions, etc. Moreover, the Java virtual machine also provides some
MBeans that provide information about the used memory (Java heap), CPU usage, uptime, etc.

Below a not complete list of provided information:

• External Database (connections, transactions, errors, execution time, etc.)

ivy Engine:type=External Database,application=*,environment=*,name=*

• Web Service (calls, errors, execution time, etc.)

ivy Engine:type=External Web Service,application=*,environment=*,name=*

• REST Web Service (calls, errors, execution time, slow calls, etc.)

ivy Engine:type=External REST Web Service,application=*,environment=*,name=*

• System Database (connections, transactions, errors, execution time, etc.)

ivy Engine:type=Database Persistency Service

• HTTP Requests (count, errors, execution time, etc.)

:type=GlobalRequestProcessor,name=

• Number of Sessions (HTTP sessions, Axon.ivy sessions, licence relevant sessions, Rich Dialog client sessions, etc.)

ivy Engine:type=Security Manager
ivy Engine:type=Rich Dialog Execution Manager
:type=Manager,context=,host=*

• Background jobs (name, next execution time, etc.)

ivy Engine:type=Job Manager
ivy Engine:type=Daily Job,name=*
ivy Engine:type=Periodical Job,name=*

• Process Start Event Beans (polls, executions, errors, execution time, etc.)

ivy Engine:type=Process Start Event Bean,,application=*,pm=*,pmv=*,name=*

• Process Intermediate Event Beans (polls, firings, errors, execution time, etc.)

ivy Engine:type=Process Intermediate Event Bean,application=*,pm=*,pmv=*,name=*

• Application, Process Model and Process Model Version, Library information (activity state, release state, name, description,
etc.)

ivy Engine:type=Application,name=*
ivy Engine:type=Process Model,application=*,name=*
ivy Engine:type=Process Model Version,application=*,pm=*,name=*

• Cluster, Cluster Nodes and Cluster Communication information (received and sent message, errors, execution time, etc.)

ivy Engine:type=Cluster Manager
ivy Engine:type=Cluster Channel

• Thread Pool information (core, maximum and current pool size, active threads, queue size)

ivy Engine:type=Thread Pool, name=Background Operation Executor
ivy Engine:type=Thread Pool, name=Immediate Job Executor

Monitoring

121

ivy Engine:type=Thread Pool, name=Scheduled Job Executor

• System Database and CMS Cache

ivy Engine type=CacheClassPersistencyService,name=* [clearCache()]
ivy Engine type=CacheClassPersistencyService,name=*,strategy=CacheAll [maxBytesToCache, maxCharactersToCache]
ivy Engine type=CacheClassPersistencyService,name=*,strategy=CacheAllRemoveUnused [maxBytesToCache, maxCharactersToCache, countLimit, usageLimit]
ivy Engine type=CacheClassPersistencyService,name=*,cache=LongBinaries [readHits, readMisses, writes, cachedLongValues, clearCache()]
ivy Engine type=CacheClassPersistencyService,name=*,cache=LongCharacters [readHits, readMisses, writes, cachedLongValues, clearCache()]
ivy Engine type=CacheClassPersistencyService,name=*,cache=ObjectsAndAssociations [objectReadHits, objectReadMisses, objectWrites, cachedObjects, associationReadHits, associationReadMisses, associationWrites, cachedAssociations, clearCache()]

• Memory (Java Heap, Perm Gen)

java.lang:type=Memory

• CPU Usage, Uptime

java.lang:type=Runtime
java.lang.type=OperatingSystem

VisualVM
We recommend to use VisualVM to monitor Axon.ivy Engine processes. VisualVM allows you to monitor the memory and
CPU usage of the Axon.ivy Engine process. It can be used to analyze problems in your Axon.ivy projects like memory leaks
or thread dead locks.

VisualVM can connect to all Java processes running on the same host and with the same user. In addition you can use JMX
(See section Java Management Extension for more information) to connect VisualVM to processes that run with another user
(e.g. as Windows Service) or on remote machines.

VisualVM is available from https://visualvm.github.io/ or as jvisualvm in the bin directory of a Oracle JDK (Java
Developer Kit).

https://visualvm.github.io/
https://visualvm.github.io/

Monitoring

122

Axon.ivy Plugin for VisualVM
In the delivery of Axon.ivy we provide a dedicated plugin for VisualVM that allows you to monitor some of the technical
aspects of an Axon.ivy Engine or Designer. For example you can observe the current transactions on the System Database,
whether you violate the licence or how many requests are running at an Axon.ivy Engine at any given time. And in the same
tool you can still observe the heap or CPU usage or create thread dumps.

Note

VisualVM is a tool to observe the current state of the monitored engine. It is not intended for long-time
observation, recording or even alarming. If you want to do that, make use of the JMX extensions of Axon.ivy.
in combination with tools like Nagios or IBM Tivoli.

The plugin itself should be mostly self explanatory. It consists of multiple tabs for the different aspects. Most of the tabs
contain a number of charts that always have a similar structure:

Installation

1. Make sure that you have an installation of VisualVM. If you use a standalone version of VisualVM, please make sure
that you use at least version 1.3.7.

2. Run VisualVM (in JDK go to the bin folder and start jvisualvm)

3. Go to the Tools/Plugins menu

4. Change to Downloaded tab and click on the Add Plugins... button

http://www.nagios.org

Monitoring

123

5. In the file chooser that appears, navigate to the subfolder misc/visualvm in your engine installation directory and choose
the visualvm-plugin.nbm.

6. Follow the instructions in the installation wizard.

7. Choose the option to restart VisualVM at the end of the installation wizard.

124

Chapter 9. Tool Reference
AxonIvyEngine

Axon.ivy Engine program. This program starts an instance of the Axon.ivy Engine.

Tip

An Axon.ivy Engine can also be started as service. More information can be found in the section Engine Service
chapter.

Options
The following options are available for the Axon.ivy Engine program:

Option Description Mandatory

-start Starts the engine. Same behaviour as if
no options are given. Allows to stop the
engine by pressing a key in the console
if a console is available.

no

-startdaemon Starts the engine. Does not allow to
stop the engine by pressing a key in the
console.

no

-stop Stops the engine. Only initiate the stop
but will not wait until the engine has
really stopped.

no

-stopdaemon Stops the engine. Will wait until the
engine has really stopped.

no

-status Prints the current status of the engine. no

Table 9.1. AxonIvyEngineConfig Options

Launchers
The following program launchers are available for the Axon.ivy Engine program:

Platform Console support Launcher

Windows no bin/AxonIvyEngine.exe

Windows yes bin/AxonIvyEngineC.exe

Linux yes bin/AxonIvyEngine

Table 9.2. AxonIvyEngine Launchers

EngineConfigCli
The console program is used to configure the Axon.ivy Engine. E.g. configure, create or convert the database.

Options
Option Description

help Shows which commands and options are possible.

Tool Reference

125

Option Description

<command> help Get help to a specific command e.g. EngineConfigCli config-db help

Table 9.3. EngineConfigCli Options

Engine Service
In productive environments it is recommended to run the Axon.ivy Engine as a service.

Windows Service

Axon.ivy Engine Windows Service. This program is the implementation of the Axon.ivy Engine Windows Service. But it can
also be used to register, unregister, start and stop Axon.ivy Engine as Windows Service.

Note

You can also register, unregister, start and stop the Axon.ivy Engine Windows Service with the Control Center.

Launchers

The following program launcher is available for the Axon.ivy Engine Service program:

Platform Launcher

Windows bin/AxonIvyEngineService.exe

Table 9.4. AxonIvyEngineService Launchers

Options

The following options are available for Axon.ivy Engine Service program:

AxonIvyEngineService [-start|-stop|-register [username password]|-unregister]

Options Parameters Description Mandatory

-start Starts the Axon.ivy Engine Windows Service no

-stop Stops the Axon.ivy Engine Windows Service no

-register Registers the Axon.ivy Engine Windows Service within Windows no

username The user name of the user in which context the windows service should run no

password The password of the user in which context the windows service should run yes, if username is
specified

-unregister Unregisters the Axon.ivy Engine Windows Service from Windows no

Table 9.5. AxonIvyEngineService Options

Linux Service (systemd)

The install service program helps to install the Axon.ivy Engine as a systemd Linux daemon. To install the service:

1. Change current directory to to the bin/ directory of your Engine: cd bin/

Tool Reference

126

2. Run following command as root: ./InstallService.sh

3. Accept the directory of your engine installation.

4. Set the user and group under which the Engine service should run. Must not be root. Typically, a special user with
limited access right should be used.

5. Start the Engine service with systemctl start AxonIvyEngine.service to check if it works.

6. Check the current status of the service with systemctl status AxonIvyEngine.service

7. If you want to start the Engine service on the system start, execute following command: systemctl enable
AxonIvyEngine.service

Tip

For more information about systemd services consult man systemd and man systemctl.

Launchers

Platform Console support Launcher

Linux yes bin/InstallService.sh

Table 9.6. InstallService Launchers

Launch Configuration

Windows Program Launcher Configuration

All windows program launchers can be reconfigured with an additional ivy launch control file (*.ilc). The ivy launch control
file must have the same name like the launcher itself but instead of the extension *.exe it must use an extension *.ilc.

Tip

If you want to reconfigure the AxonIvyEngine.exe launcher, then copy the Example.ilc file and rename it to
AxonIvyEngine.ilc.

The ivy launch control file is a text-based property file. The file has the following format:

comment line
property=value
property=value

Open the file with a text editor to reconfigure it. Most properties found in the ivy launch control file are used to modify java
virtual machine options. The following list shows all available options and explains them:

Property JVM
Option

Description

ivy.heap.max.ratio yes The maximum heap size (-Xmx) in percentage of the physical memory of the
machine.

ivy.heap.max.size yes The maximum heap size (-Xmx) in megabytes.

ivy.heap.start.size yes Start heap size (-Xms) in mega bytes.

Tool Reference

127

Property JVM
Option

Description

ivy.heap.free.max.ratio yes The maximum free heap memory (-XX:MaxHeapFreeRatio) in percentage of the
current heap size.

ivy.heap.free.min.ratio yes The minimum free heap memory (-XX:MinHeapFreeRatio) in percentage of the
current heap size.

ivy.heap.young.max.size yes The maximum young heap size (-XX:MaxNewSize) in megabytes.

ivy.heap.young.min.size yes The minimum young heap size (-XX:NewSize) in megabytes.

ivy.heap.eden.survivor.ratio yes The survivor heap size as ratio between the eden and the survivor heap size (-
XX:SurvivorRatio)

ivy.heap.tenured.young.ratio yes The young heap size as ratio between the tenured and the young heap size (-
XX:NewRatio).

ivy.jvm.type yes The Java virtual machine type to use (ClientHotspotJVM, ServerHotspotJVM).

ivy.dir.aux no The directory where the ivyTeam jars are located.

ivy.dir.jre no The directory where the java runtime environment is located.

ivy.java.main.class no An own Java class to launch instead of ivy engine's main starter class.

ivy.java.main.method no Another Java static method to launch on the ivy.java.main.class instead of the default
main method. The called method should take the same arguments as a Java main
method.

ivy.vm.additional.options yes Additional Java virtual machine arguments

ivy.garbage.collector.options yes Additional garbage collector arguments. See too GC Optimization.

ivy.windows.service.name no The name of the Windows service (only for Windows service launcher).

ivy.application.name no The name of the application (only for application launcher).

ivy.application.singleton no Is the application a singleton (true, false; only for application launcher).

Table 9.7. Ivy Launch Control Properties

The properties that are bold are the most used properties.

Linux Launcher Configuration
The Java virtual machine (JVM) options for the Engine are configured in the AxonIvyEngine.conf file. For all other helper
programs the JVM options are configured in the control.conf file.

Tip

If you want to configure the memory (-Xmx, -Xms, etc.) or optimize any other JVM options of the Engine then
edit the AxonIvyEngine.conf file.

AxonIvyEngine.conf

#
ivyTeam Launch Configuration for the Engine
#
===
#

#
Specify Ivy options to pass to the Java VM.
Don't modify them unless you know what you do.
#
if [! "x$JAVA_OPTS" = "x"]; then

Tool Reference

128

 echo "JAVA_OPTS already set in environment; will override default settings"
fi

JAVA_OPTS="-Xverify:none -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+CMSClassUnloadingEnabled -XX:-OmitStackTraceInFastThrow"

#
Garbage collector optimization arguments (for more information see: EngineGuide -> Configuration -> GC Optimization):
Note: Uncomment only one setting of the following two GC optimizations
#
* GC optimized for JSF
#
#JAVA_OPTS="$JAVA_OPTS -XX:+DisableExplicitGC"
#
#
* GC settings optimized for RIA with explicit full concurrent gc every 10 minutes (default setting)
#
JAVA_OPTS="$JAVA_OPTS -XX:+ExplicitGCInvokesConcurrent -Dsun.rmi.dgc.server.gcInterval=600000 -Dsun.rmi.dgc.client.gcInterval=600000"

#
Max heap size (-Xmx)
#
JAVA_OPTS="$JAVA_OPTS -Xmx2048m"

#
Start heap size (-Xms)
#
JAVA_OPTS="$JAVA_OPTS -Xms128m"

#
Headless mode that does not require an X11 environment
#
JAVA_OPTS="$JAVA_OPTS -Djava.awt.headless=true"

#
To enable access to the java mangement extension (JMX) server from remote hosts, or from other users on the same machine, uncomment the following property line.
You may want to configure another tcp/ip port.
Access to the management server is protected by default by the java authentication and authorization service.
The file configuration/jaas.config is used as configuration file for JAAS. It must contain a JMX configuration entry.
By default the java discovery protocol (JDP) is enabled.
#
#JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote.port=9003 -Dcom.sun.management.jmxremote.login.config=jmx -Djava.security.auth.login.config=configuration/jaas.config -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.autodiscovery=true"

#
Define the local network IP address or hostname of this computer on which the JMX port should be bound for remote access (Not: 127.0.0.1)
#
#JAVA_OPTS="$JAVA_OPTS -Djava.rmi.server.hostname=<IP of the machine>"

Engine Configuration UI
The Engine Configuration UI is a simple user interface that lets operators apply the basic configuration that is necessary to
have a productive engine running. This includes especially the installation of a license and the creation of a system database.

Advanced users might prefer to use configurations files (“ivy.yaml”) and the “EngineConfigCli” to roll out and Axon.ivy
Engine into production. Configuration files make the installation process faster re-reproducible in various environments such
as dev, test and prod.

Usage: Apply configurations in the Tabs. Click Save to store the modified data on all tabs. Hit Discard Changes to reload
the configuration from the filesystem and database.

Tool Reference

129

Legacy Storage Format

The Engine Configuration UI stores the defined configurations in legacy storages such as the System Database
(connector-properties, admins).

Since 7.2 users can stick to a file based configuration approach by using the “ivy.yaml”

Note

The changes that you make with the Engine Configuration do not become active unless you restart the engine.

Launchers

The following program launchers are available for the Axon.ivy Engine Configuration:

Platform Console support Launcher

Windows no bin/AxonIvyEngineConfig.exe

Windows yes bin/AxonIvyEngineConfigC.exe

Linux yes bin/AxonIvyEngineConfig

Table 9.8. AxonIvyEngineConfig Launchers

Via Control Center

After starting the ControlCenter, select a server entry from the server list on the left side and press the Server button in the
configuration area to start the configuration program.

Windows: Start the ControlCenter.exe program in the bin directory of the Axon.ivy Engine installation directory.

Linux: Start the ControlCenter program in the bin directory of the Axon.ivy Engine installation directory to start the
ControlCenter program.

Options

The following options are available for the Axon.ivy Engine Configuration program:

Option Description Mandatory

-headless Activates the headless mode. Useful if no graphical user interface is installed on the server
machine.

no

Table 9.9. AxonIvyEngineConfig Options

Licence

On the Licence tab you have to upload a valid licence:

Tool Reference

130

Figure 9.1. Axon.ivy Engine Configuration Licence Tab

Use the Upload Licence button to open the file browser and select the licence which should be used.

Note

It is possible to configure the engine without a valid licence, but the engine will always start in the demo mode
if you do not have a valid licence and therefore does not use your configuration.

System Database

On the System Database tab the Axon.ivy Engine system database can be configured, created and converted:

Tool Reference

131

Figure 9.2. Axon.ivy Engine Configuration System Database Tab

First choose the database system and the JDBC driver you want to use. At the moment the Axon.ivy Engine supports the
following database systems:

• MySQL

• MariaDB

• Oracle

• Microsoft SQL Server

• Postgre SQL

The choice of the second step depends on the database system and JDBC driver you have chosen in the first section. Click
on the database system links above to find information about how to configure the connection settings. The applied db user
needs the following privileges:

• CREATE DATABASE (to create the system database out of the Engine Configuration)

Tool Reference

132

• CREATE, ALTER, DROP Tables, Views, Indexes, Triggers (to update the Axon.ivy Engine)

• INSERT, SELECT, UPDATE, DELETE data

In a third step you can configure additional connection properties. When clicking on the Additional Propertiesbutton a dialog
will show, where you can add, edit or delete the properties. See database system specific chapter (links above) to find
information which additional connection properties are available for the database system that you have chosen.

At the top of the page the state of the connection is visible. Use the button on the right to try to connect to the system database.

Create new System Database

If the system database does not exist, use the create button at the bottom to create a new system database. During the creation of
a new database the configured connection parameters are used. For some database system additional information is necessary.
It must be provided in a pop-up dialog before the new database can be created. See database system specific chapter (links
above) to find what additional information is necessary for the chosen database system.

Note

You can previously create an empty database/schema. In this case the server configuration tool will only create
the necessary tables into the given database/schema. If the database/schema doesn't exist already, the server
configuration tool creates it with a best practice configuration. In this case the applied db user needs the following
privileges:

• CREATE, ALTER, DROP Tables, Views, Indexes, Triggers (to update the Axon.ivy Engine)

• INSERT, SELECT, UPDATE, DELETE data

The best practice configurations are documented in chapter System Database.

Convert an old System Database

Warning

We strongly recommend to backup your database before you convert it to a newer version. Be sure that you have
enough disk/table space on your database server. Most conversions add new fields to existing database tables
which will enlarge the used database space.

If the system database has an older version, use the convert button at the bottom to convert it to the latest version.

Warning

Depending on the conversion steps and your database system it may be necessary to cut all connections to
the system database to avoid problems. If you have problems with the conversion, please disconnect all other
database management tools, clients or other tools that has a connection to the system database and try again.

System Administrators

On the Administrators tab you can configure users that have the right to administrate the Axon.ivy Engine:

Tool Reference

133

Figure 9.3. Axon.ivy Engine Configuration Administrator Tab

Defining an email address for the administrators is recommended. Notifications of critical events like licence limits
reached are sent to these email addresses.

Warning

This tab is only enabled if you have configured a connection to a valid system database.

Web Server Ports

On the Web Server tab you can configure which protocols the internal web server of Axon.ivy Engine should support and
on which IP ports the web server is listening:

Tool Reference

134

Figure 9.4. Axon.ivy Engine Configuration WebServer Tab

The following protocols are supported:

Protocol Description

HTTP HTTP protocol .

HTTPS HTTP protocol over secure socket layer (SSL).

AJP Apache Jakarta Protocol. This protocol is used for the
communication of the embedded Servlet Engine with external
WebServers like IIS or Apache.

Table 9.10. Web Server Protocols

Warning

This tab is only enabled if you have configured a connection to a valid system database.

Note

In case you disable HTTP port, then the specified port will still opened by the engine for internal purposes. Even
though the engine will refuse connections from remote hosts.

Cluster

Note

This tab is only visible if you have installed an Axon.ivy Enterprise Edition licence.

On the Cluster tab you have to configure some information according the local cluster node:

Tool Reference

135

Figure 9.5. Axon.ivy Engine Configuration Cluster Tab

Use the Add local node button to add this installation as a new Engine cluster node to the list of cluster nodes in your Axon.ivy
Engine Enterprise Edition. You have to configure an IP Address and an IP Port that will be used by the cluster to communicate
with this node.

Note

An Engine cluster node is uniquely identify by the host it is running on and a local identifier. The local identifier
is a unique number that identifies nodes running on the same host (machine). Both values are provided by the
installed licence. Therefore, every Engine cluster node needs its own licence file.

Admin UI
The Admin UI is the application to manage and deploy applications. Manage its environments and global properties of the
Axon.ivy engine.

Legacy Rich Dialog Application

The Admin UI featureset is historic and partly broken:

• System Properties, Application Properties, Security Systems, Active Environments : can still be viewed, but
are overwritten by the values defined in config files such as the “ivy.yaml”

• Some features are still only accessible trough the Admin UI: like changing the activity state of Apps, PMs
and PMVs.

Since 7.2 users can deploy applications by dropping the project artifacts in the deploy directory. And its
application settings can be managed with the “app.yaml” file.

Opening the administration tool
After you have successfully started the Axon.ivy Engine, you can start the engine administration tool. This tool allows you
to create and manage all your applications on the engine and in addition to set some further configuration properties.

Tool Reference

136

To do so, launch your preferred web browser and point it at the following the address: http://ServerName:Port/ivy.

You should be directed to the Axon.ivy Engine info page:

Figure 9.6. Axon.ivy Engine info page

This page displays all your applications and their process models with all contained process starts. When you haven't set up
any applications yet, this page will be empty, just like in the screenshot above.

Click the Admin link to open the administration tool. Depending on your computer's settings, you may be asked if you'd like
to open or save a JNLP file. Choose to open the file directly and wait for the Java Web Start application to load.

Note

Loading of the administration tool may take a few minutes the first time, because some application data needs
to be deployed first internally. Please be patient.

Figure 9.7. Admin Tool

Applications
Applications are environments for process models (projects). Applications are strictly separated from each other and do not
share anything. Every application has its own process models (and -versions), roles, users, external databases and so on.
Projects may only use libraries that are deployed within the same application.

Tool Reference

137

Create new application

Create by file

Since 7.2 new applications can be created simply by dropping its files into a the deploy directory. There is no
need to pre-configure and create an application with the Admin UI. See “Deployment”

To create a new application, press the new application icon () in the Applications section. A dialog will prompt you to
enter the following information:

Name The name of the application to create.

Description An optional description of the application.

File Directory The directory on the file system where all the files of this application and its process models
will be stored. You can specify an absolute directory (e.g. C:/Data/IvyApps/App1 or /var/
ivy/apps/app1) or a directory relative to the engine's installation directory (e.g. apps/App1).
The directory may already exist, but it must be empty.

Tip

We recommend to configure an absolute directory outside of the installation
directory of the engine because the data in the directory has a much longer
life time than the current version of the engine. E.g. if you upgrade your
engine you have to choose a new installation directory and may want to delete
the installation directory of the old version, which is not possible if the file
directory is located inside the installation directory.

Warning

When using an Axon.ivy Engine Enterprise Edition, the file directory must be
located on a shared file system which is accessable by all nodes of the cluster
with the same file path. This path must be configured here.

Owner The owner of the application. This field is used for documentation purposes only.

Security System The security system from which the users are imported. By default this is Axon.ivy which
means that all users and roles are completely managed by the Axon.ivy Engine. You can
change this to Microsoft Active Directory or Novell eDirectory in which case the users
come from the selected directory service. See section Configuring an External Security
System for more details about the integration of external security systems.

Create process models Check the process models, that should automatically be created and deployed into the new
application.

Tool Reference

138

Axon.ivy Addons: Contains some Rich Dialog functionality such as some common dialogs
simple questions or messages, document factories to create Office documents and many
more. All these features can be used freely. Please read more about the Axon.ivy Addons
in the documentation of the Axon.ivy Designer.

Axon.ivy Workflow UI (RIA and HTML Version): Both process models contains a
default Workflow UI, which provide process and task lists. Furthermore it is possible to
browse through history of already finished tasks. Even more, the RIA version provides
functionality for administrating all cases and tasks of the application. More information can
be found in the Workflow UI guide.

Click Create to create the application. If you have chosen a security system other that Axon.ivy, a dialog will appear to
configure it (see next section).

Warning

There is a default Portal application which should only be used for demo purpose. Create always a new
application for the production environment, because the shipped Portal application has a special lifecycle and
no real migration path.

Configuring an External Security System

Configured by files

Since 7.2 the external security system might be configured via “ivy.yaml” and activated in the “app.yaml”. In
this case the security system can still be viewed in the Admin UI, but changes have no effect on the actual config.

When you choose an external security system (e.g. Microsoft Active Directory) for a new application, you have to configure
the connection to the directory server, to specify which users should be synchronized and how the attributes of these users
should be mapped.

Users are synchronized as follows:

• Users that exists in the external security system but not in the Axon.ivy Engine are imported to the Axon.ivy Engine if
they match the filter criteria.

• Users that exists in the Axon.ivy Engine but not in the external security system or do not match the filter criteria are deleted
from the Axon.ivy Engine.

• Axon.ivy user attributes that are mapped to exernal security system attributes are updated with the latest values from the
external security system.

The user synchronisation is executed:

• Once a day (see synchronization time).

• If one click the Synchronize button on the Security System section of the application configuration screen.

• If a user tries to login himself. This means that a user can login even if he is not yet imported to the Axon.ivy Engine.

Tool Reference

139

Figure 9.8. External security system configuration dialog

Host / Port The hostname (or IP address) and port of the directory server

Authentication kind The authentication method. Use none if your server does not require authentication to
connect or simple if authentication by username and password is required

Username / Password The username and corresponding password to use for connecting to the server. The
format of the username can be one of the following (examples):

• connectionuser@fully.qualified.domain.name

• cn=Connection User, ou=Service Accounts, dc=fully,
dc=qualified, domain, dc=name

Use SSL Activates Secure Sockets Layer (SSL) connection to the Active Directory server.

The SSL connection to the Active Directory Server will only work if the JRE of the
Axon.ivy Engine has the certificate of the Active Directory Server in its trust store. The
certificate import into the JREs system trust store can be done with a graphical keytool
like the KeyStore Explorer or the JRE keytool:

bin/keytool.exe -importcert
-file yourCertificateFile
-keystore lib/security/cacerts

http://keystore-explorer.org/

Tool Reference

140

-storepass changeit
-alias myCertificateAlias

Ensure that the System trust store is activated within the “System Properties” table.
The System Property 'SSL.Client.UseSystemTrustStore' must be set to 'true'.

Use LDAP connection pool If selected, the server will try to reuse connections and not open a new connection each
time.

Import context The import context is a global filter. This filter is applied to every query made to the
external security system. Every user and user group located below this context can bee
seen. Everything outside the context cannot be seen and will be ignored. In most cases
the import context is set to a root object (e.g. for the domain soreco.ch to dc=soreco,
dc=ch).

In some cases you may want to set the import context to a organization unit so that only
the users located below the organization unit are synchronized.

Use the Browse button to select the import context from the server specified above (if
the connection fails, check the connection data).

Import users of group Limit the synchronization of users to a specific user group. Only users that are located
below the import context and are members of the specified user group are synchronized.

Use the Browse button to select the user group from the server specified above (if the
connection fails, check the connection data).

User Filter LDAP filter expression to make sure only user objects are synchronized.

Synchronization time Enter the time of day when synchronization should take place. Format is HH:MM (24h
format).

LDAP attribute mapping Default attribute mappings can be adjusted.

Further LDAP attributes can be mapped to additional user properties. Enter the LDAP
attribute name in the first column and the name of the additional user attribute in
Axon.ivy into the second column.

The external security system configuration can be changed by using the Edit button on Security System section of the
application configuration screen.

Warning

If you change the security system configuration then some users that where imported before may now no longer
match the import filter criteria. This means that those users are deleted from the system and all their tasks will be
changed to state UNASSIGNED. All tasks in state UNASSIGNED have to be reassigned manually to other users.

Application Default Settings

Configured by files

Since 7.2 the application settings might be configured via “app.yaml”. In this case they still can be viewed in
the Admin UI, but changes have no effect on the actual config.

The button configure default settings on the application configuration screen leads to the Application Default Settings.

Tool Reference

141

Figure 9.9. Application Default Settings

Email Notification Settings

This section contains the default settings for notification emails. The settings are used when a new user is created.

Email Notification Settings

It is possible to be notified if a new task is created that is related to you (either by direct assignment or by assignment to a role
you own). Furthermore, a daily digest mail with a summary of all open tasks can be sent to you by Axon.ivy.

Which language should be used for
the emails

Choose in which language you would like to receive the emails. If your preferred
language is not contained, please contact your Axon.ivy administrator.

Never (disable email notification) You can switch off the sending of all notification mails by ticking this checkbox. If
you do so, you cannot set the other options.

When a new task for me or one of
my roles is created

If this is set, you will receive a notification email whenever a new task is created that
is assigned either directly to you or to one of the roles you own.

Daily Summary on Choose the days on which you want to receive an email with a summary of all your
open tasks.

Tip

If you want that temporary no mails are sent (e.g. for holidays), then just tick the Never checkbox. The email
sending is now switched off, but the previous settings are still stored. As soon as you untick the Never check
box, your standard configuration is back again.

Email Content Creation Processes

In this area of the Application Default User Settings dialog, you can select a deployed process model that contains notification
processes for Daily Summary or for New Task notification respectively. Before you see any available processes in the combo
box you have to deploy at least one PMV library including an Email Notification Process.

Tip

Choose <System Default> to use the built-in notification mails of the Axon.ivy Engine.

Default Executed Processes

This section allows you to override the default pages (Application Home, Task List, Process Start List, Login and End) of
an Axon.ivy web application.

You can create your own process model to display these pages or you can use the Axon.ivy Workflow UI (HTML Version).
See section create new application to learn how to use the "Axon.ivy Workflow UI (Html Version)".

Tool Reference

142

Default Pages Implementor <System Default> will show the default Axon.ivy pages.

HtmlWfUi will show up, if you have deployed the "Axon.ivy Workflow UI (Html
Version)".

Any process model deployed, which contains a request start with a signature for at
least one page will be shown in the dropdown. Instead of showing the default pages,
the corresponding process of the selected process model is started. If the process start
signature of the default page is not available in the selected project, the default page
from Axon.ivy will be used.

Process Models and Process Model Versions
An application can have multiple process models. Each process model can have different versions. A process model
corresponds to the concept of a project on the Axon.ivy Designer. A process model version corresponds to a versioned snapshot
of that project at some point of time.

The Concept of Versions

A process model can exist in multiple versions called process model versions. These versions allow you to make changes in
a project and deploy it again without having to worry about the compatibility of currently running cases. If the new version
is not working as expected, you can always go back to a previous working version.

Creating Process Models and Process Model Versions

To create a new process model, you have to select the application in which you would like to create it. Press the new process

model button in the toolbar (). You will be asked for a name (typically you chose the name to be the same as the name of
the project you intend to deploy within this process model) and an optional description.

Once you have created the process model, you can continue with adding a first process model version. To do so, select the

process model from the tree on the left hand side and press the new process model version button (). You will be prompted
to enter a name and an optional description again.

Tip

It is recommended to use the description field of the new process model version to document the major changes
from the previous version.

Manage Activation and Release State

Applications, process models and process model versions all have an activation state. The process model version additionally
has a release state.

Figure 9.10. Managing the activation state

To bring a process model version into the Active state, the process model version itself, the parent process model and the
parent application have to be in the state Active. Furthermore, the release state of the process model version has to be in
RELEASED or DEPRECATED. The same is necessary for all required libraries of that process model version.

When looking at the details of an application, process model or process model version you will always see a Configured
state and a State. The Configured state is the one you can freely change and the State is the actual state that depends on the
states of the parent process model and application and of the release state.

Tool Reference

143

Figure 9.11. Managing the release state

Release States

Name Description

PREPARED The process model version has been created and a project may
already be deployed. However, the process model version is
not used yet.

RELEASED The process model version is the currently released version.
This means that all new cases will be started within this
version. Only one version in a process model may be in this
state.

DEPRECATED The process model version has previously been in state
RELEASED. But another process model version was
released and activated recently. All cases that were started
in this process model version will finish in this version. As
soon as there are no more running cases in this version and
all process model versions that are using it are not in state
RELEASED nor DEPRECATED, the state will change to
ARCHIVED automatically.

ARCHIVED The process model version has previously been in state
RELEASED or DEPRECATED. There are now no more
cases that are running in this version, it is safe to delete
it. Process model versions in this state are not started and
therefore only use minimal resources. You may set it back
again to RELEASED.

DELETED The process model version has been deleted. All data that
belong to this version are deleted too.

Table 9.11. Release states

Activation states

Name Description

INACTIVE No new process in this process model version can be started
and all running cases and tasks have been suspended.

ACTIVE New processes in this version can be started and all tasks are
active.

LOCKED No new process can be started, but the currently running tasks
can continue to their next savepoint.

DEACTIVATING The state is changing to INACTIVE.

ACTIVATING The state is changing to ACTIVE.

LOCKING The state is changing to LOCKED.

Table 9.12. Activation states

Project dependencies

Projects can depend on each other. The dependencies are configured in the deployement descriptor of the project. This
dependencies are evaluated and resolved during the deployment of a project. On the process model version detail page you

Tool Reference

144

can press Dependencies... to see the resolved dependencies of the project deployed to the process model version. You see the
process model versions that the current process model version requires. And also vice versa which process model versions
require the current process model version.

To change a resolved dependency select the dependency and press Edit Selection. You can then select another version that
fullfils the dependency requirements.

Figure 9.12. Project Dependencies

Deployment wizard

Create by file

Since 7.2 new applications can be deployed simply by dropping its files into a the deploy directory. There is no
need to use the time consuming deployment wizard anymore. See “Deployment”.

The deployment wizard can be started on the toolbar.

Tool Reference

145

Figure 9.13. Command to Start the Deploment Wizard on the Toolbar

On the first page of the wizard select the projects that you want deploy. The projects can either be located on the server or
on the client. If you select a folder then the wizard searches all packed (ivy archive) or unpacked projects located below that
folders. If you select a *.zip file then the wizard searches all projects located inside the *.zip file. The found projects will be
displayed. Select the projects you want to deployed and press Next.

Tip

Read the chapter Deployment in the Axon.ivy Designer Guide to find out how to create a zip file that contains
all files of a project.

Tip

Read the chapter Projects in the Axon.ivy Designer Guide to find information about ivy archives and how to
export them.

Figure 9.14. Deployment Wizard - Source

On the second page of the wizard select the applications to which you want to deploy your projects and press Next.

Tool Reference

146

Figure 9.15. Deployment Wizard - Target

On the third page of the wizard you see a preview of the actions the wizard will perform. Note, that the wizard automatically
choose the process model and process model version where it deploys a project to. If everything is as you expect press Next.
If you do not like the automatically default behaviour press Previous and then on the previous page Details to choose another
configuration. More information about process model and process model version can be found in the previous chapter.

Tool Reference

147

Figure 9.16. Deployment Wizard - Preview

On the fourth page of the wizard the projects are validated. If no errors are found you can press Next. If you get warnings
please read them carefully and then decide if you want to proceed or not.

Tool Reference

148

Figure 9.17. Deployment Wizard - Validate

On the last page of the wizard the projects are deployed. During the deployment a log is written which contains information
about the tasks that are executed. Press Finish to close the wizard.

Tool Reference

149

Figure 9.18. Deployment Wizard - Deploy

Business Calendar

A business calendar defines the following three things:

• Days which are free of work. E.g. 25. December.

• Period in a Day which is working time. E.g. 08:00-17:00

• First Day of the Week. E.g. Monday

Business calendars are used to calculate time periods in working time. For example a period of 3 working days starting on
Friday would end on Tuesday if Saturday and Sunday are defined as free days. For more information consult the documentation
of ch.ivyteam.ivy.application.calendar.IBusinessCalendar in the Public API.

Every application has at least one business calendar. The business calendars can be configured using the Configure Calendar
Settings Button on the Application Configuration screen.

Every environment can have its own default business calendar (see chapter Environment Business Calendar).

Tool Reference

150

Business Calendar Definition

Business calendars are defined in a hierarchy. The children inherit all definitions of all its parents. All business calendars must
directly or indirectly inherit from the Default business calendar.

Start of Week

The Start of Week defines the first day of a week. In Switzerland and its neighbour countries this is Monday. In other countries
like Great Britain the week starts on Sunday.

Working Time

The Working Time defines which time of a day is working time. E.g. 08:00-12:00, 13:00-17:00

The working time applies to all days which are not defined as free days. It is not possible to define different Working Times
for different days.

Free Days of Week

The Free Days of Week define at which days of the week no work is done. E.g. Saturday, Sunday

Free Days of Year

The Free Days of Year define at which days of the year no work is done. These free days of the year will be free every year
at the same day. E.g. 1.1. (New Years Day), 25.12 (Christmas).

Free Easter Relative Days

The Free Easter Relative Days define days of the year no work is done. These free easter relative days will be free every year
at another day depending on the easter day. E.g. 0 (Easter Day), 1 (Easter Monday), -2 (Good Friday).

Tool Reference

151

Free non-recurring Dates

The Free non-recurring Dates define non-recurring days when no work is done. These free non-recurring days will only be
free once. E.g. 7.12.1931.

Environments

Configured by files

Since 7.2 environments can be configured via “ivy.yaml” or app.yaml. In this case the environment configs can
still be viewed in the Admin UI, but changes have no effect on the actual config.

This section briefly discusses the usage of environments in your projects .Developers should have the possibility to configure
multiple environments (pointing to an infrastructure) and decide at runtime which environment should be used for the
application. For instance you can have a development environment, a test environment and a productive environment. Here
are some examples where environments can be used

• Companies provide different environments for their software products, like Development, Test and Productive. Each
environment has its own infrastructure including databases, web services and other connections used by the project.

• Multi Client Capability. When the user logged into the system he can choose the mandant (e.g. Company 1, Company 2,
etc.) and works with the data of the selected company. In the background the right databases connections, web services and
other services for the selected environment will be used.

If your projects use environments, you have to configure the respective environment configurations on the engine. The first
time you deploy an application that uses environments, the environments of the project will automatically be added on the
engine as well. Each application manages his own environments. If you already define your different environments in your
project on the designer, you don't need to reconfigure these environments on the engine again. This has the advantage that
you can already test different environments at design time, before you deploy your projects on the engine. Each application
contains a Default environment where all default values of the global variables and default database configurations are defined.
In addition to the default environment, each application has one ore more user defined environments.

In order to change the environment for an application at runtime you must go to the details of an application and change the
active environment for that application and press Set

Figure 9.19. Set active environment for an application

Environments acts as a container for

• Global Variables

• External Database Configurations

• Web Service Configurations

• REST Client Configurations

Tool Reference

152

• Business Calendar Configurations

Configuration of environments

Environment configurations can be changed by double-click on the environment entry in the list. You will see that the
environment acts as a container for global variables and external database configurations. The description of the environment
can be used to provide important infrastructure information about the server, databases and other stuff, which can be relevant
to other users.

Figure 9.20. Environment details

Global Variables

Global Variables acts as global constants which can be used in your application. Global Variables are simple Key/Value pairs
which can be specified by the developer. Some examples for global variables are:

• Company data (name, address, contacts)

• Simple Rule Values (e.g. credit account)

• Path values for saving files

• Path values for 3rd party systems and some other variables

Global variables must be defined at design time. It is not possible to create new variables on the engine. Each variable has
a default value, configured at design time or in the default environment. In order to override the values of global variables for
a environment just double-click the variable entry and override the values in the detail dialog. The default value of a global
variable must be set in the Default environment.

Tool Reference

153

Figure 9.21. Details of a global variable

If the global variable is a default one, the system asks you to override the value for the environment. If you press "yes" the
value of the global variable is overridden for the environment. You can always reset the global variable, by pressing Reset
to Default.

Figure 9.22. Question to override the default value of the global variable

External Databases

If your projects use external databases, you have to configure the respective database connections on the engine. The first
time you deploy a project that uses external databases, the database configurations of the project will automatically be added
on the engine as well. Also available environment configurations which already done at design time, will be added. Since
you probably use a test database during development and you want to use your production database on the engine, you can
use the different environments to set a different configurations. Overridden Database configurations for an environment will
be displayed with the icon . Default database configurations or database configurations which are not overridden for the
environment will be displayed with the icon .

To change the connection settings, select on the entry for a database in the list. You will see the connection URL used to
connect to the database in the selected environment, the maximum number of connections, all currently open connections
and the last executed statements.

If the selected environment is not the default environment, and you select a database configuration, which has no environment
connection settings, you only can configure it. If you press Configure, the system asks you to override the database
configuration for the selected environment. Press Yes to override the database configuration for the environment. You can
always reset the database configuration to the default one, by pressing the button Restore to Default in the detail dialog, or
right click on the database in the list and use the Menu item Restore to Default.

Tool Reference

154

Figure 9.23. Databases

You can directly edit the maximum number of connections that may be simultaneously used.

To change the connection settings, press the Configure button next to the driver and connection URL fields. This will bring
up a dialog in which you can configure the database product, driver, hostname, database, username, password and additional
connection properties.

Figure 9.24. Configuring the connection of an external database

Web Services

If your projects use web services, you have to configure the respective Web Service on the engine. The first time you deploy
a project that uses Web Services, the Web Service configurations of the project will automatically be added on the engine

Tool Reference

155

as well. Also available environment configurations which already done at design time, will be added. Since you probably
use a test environment during development and you want to use your production environment on the engine, you can use the
different environments to set a different configurations. Overridden Web Service configurations for an environment will be

displayed with the icon: . Default Web Service configurations or Web Service configurations which are not overridden for

the environment will be displayed with the icon .

In order to edit a Web Service configuration just select the Web Service from the list and the details of the selected Web
Service will be displayed in the detail panel.

Name The name of the Web Service. This attribute can not be modified on the engine.

Description An optional description of the Web Service. This attribute can note be modified on
the engine

Use Authentication The directory on the file system where all the files of this application and its process
models will be stored. You can specify an absolute directory (e.g. C:/Data/IvyApps/
App1 or /var/ivy/apps/app1) or a directory relative to the engine's installation directory
(e.g. apps/App1). The directory may already exist, but it must be empty.

Session Handling Mode You can chose session handling mode for current configuration. There are 3 modes
available now:

• NO there will be no session handling when you use this configuration

• WSELEMENT invoking the same service from the same "WS step" process entry
existing sessions will be reused

• APPLICATION Within ivy applications whenever you invoke the same service
existing session will be reused

Authentication Type You can chose a authentication Mode for current configuration. There are 3 types
available now:

• HTTP BASIC Use the HTTP basic authentication for the Web Service call

• HTTPS Use HTTPS transport

Tool Reference

156

• DIGEST Use DIGEST authentication

Username When authentication is used, this username will be applied to get access to this web
service. You can use IvyScripts in this field.

Tip

When you specify authentication in "WS step" process element, these
settings (Username and Password) will be overridden. Use Scripts like
"in.user" carefully, since you might use this WS entry in multiple
processes with different data types.

Password When authentication is used, the username above and this password will be applied to
get access to web service. IvyScript is also interpreted in this field.

Endpoint Addresses for Port Types The name of the Web Service. This attribute can not be modified on the engine.

REST Clients

If your projects use REST Clients, you have to configure the respective REST Clients on the engine. The first time you deploy
a project that uses REST Clients, the REST Client configurations of the project will automatically be added on the engine
as well. Also available environment configurations which already done at design time, will be added. Since you probably
use a test environment during development and you want to use your production environment on the engine, you can use the
different environments to set a different configurations. Overridden REST Client configurations for an environment will be
displayed with the icon: . Default REST Client configurations or REST Client configurations which are not overridden for

the environment will be displayed with the icon .

In order to edit a REST Client configuration just select the REST Client from the list and the details of the selected REST
Client will be displayed in the detail panel.

UUID Universal unique identifier of the REST Client. The REST Client can be referenced by this uuid.
Cannot be modified.

Name The name of the REST Client. The REST Client can be referenced by this name. Can be modified.
Note that references using the name will break if you change it.

Tool Reference

157

Description Description of the REST Client.

URI The base URI under which the remote service publishes its resources (e.g. https://api.twitter.com/1.1).

The URI can contain template placeholders which are resolved later by the client user (e.g. https://
api.twitter.com/{version}).

ivy.rest.client("twitter").resolveTemplate("version", "1.1").get()

Tip

To consume a REST service running in the same Axon.ivy Engine / Application
as the client a set of Axon.ivy placeholders can be used. These placeholders are
automatically resolved: {ivy.engine.host}, {ivy.engine.http.port}, {ivy.engine.context},
{ivy.request.application}.

E.g. http://{ivy.engine.host}:}{ivy.engine.http.port}/
{ivy.engine.context}/api/{ivy.request.application}/my/
service

Authentication HTTP Basic Adds support for HTTP Basic authentication.

HTTP Digest Adds support for HTTP Digest authentication.

Username The name of the user used to authenticate the client.

Password The password of the user used to authenticate the client.

Features JSON Adds a feature so that responses in JSON are mapped to Java Objects and Java
Objects in requests are mapped to JSON.

Features List Shows the configured "features" classes. The classes configured here are
registered in the WebTarget using the method register(Class). The
classes needs to implement a JAX-RS contract interface and must have a default
constructor.

Add Adds a new feature class.

Remove Removes the selected feature.

Properties Properties Table Properties can customize the settings of the REST Client or one of
its features. Well known properties of the client are documented here:
org.glassfish.jersey.client.ClientProperties.

The properties configured here are registered in the WebTarget using the
method property(String, Object).

Add Adds a new property.

Add Password Adds a new password property. The value of a password property is not
visible in the table and is stored decrypted in the configuration file.

Remove Removes the selected property.

Business Calendar

Each environment can define its own default business calendar which is going to be used to calculate time periods in working
time if the environment is active. By default the global default business calendar is set.

Business calendars are defined on the Application (see chapter Application Business Calendar)

https://jersey.github.io/apidocs/latest/jersey/org/glassfish/jersey/client/ClientProperties.html

Tool Reference

158

Export/Import Environment(s)

One or multiple environments can be exported into or be imported from a XML file. All configurations that belong to the
selected environments will be exported or imported (see previous sub chapters). This can be used to transfer environment
configurations from one Axon.ivy Engine installation to another. It is even possible to modify the exported XML before it
is re-imported on the same or another engine.

The files can be chosen from the local computer that the user is working on or from the server.

Note, that the export/import log file does not have to be set. In any case, you will see an graphical log of the results during
the export or import.

Note

The imported environment data has always precedence over the data in any existing environments. Exactly
speaking, the following rules apply:

• If a configuration exists both in the import file and in the target environment, then the data for this
configuration will be taken from the import file.

• If a configuration exists in the import file but in the target environment, then the configuration from the import
file will be created in the target environment.

• If a configuration does not exist in the import file but exists in the target environment, then the configuration
in the target environment will be deleted.

• If a configuration is defined in the import file but does not have a corresponding default configuration in the
target application then nothing happens.

• If the import file contains an environment that does not exist in the target application, this environment is
not imported.

Tool Reference

159

Users and Roles

Roles and users are always configured per application. On the application details panel, you will find a group Security System.
There the number of all existing users and roles are shown.

If you are using an external security system such as Microsoft Active Directory you can force a synchronization with the
directory using the Synchronize button. To change the connection and import configuration, press the Edit... button.

Figure 9.25. Overview of roles and users

User list

When clicking the Show... button next to number of users, you will be presented with a list of all existing users. You can
create, edit and delete users. You can also set roles and permissions of any users individually.

Note

When using Microsoft Active Directory or Novell eDirectory as security system, you will not be able to create,
edit or delete users. All these tasks need to be performed on the Active Directory or eDirectory directly and will
then be synchronized with Axon.ivy.

Figure 9.26. List of all users

Creating a New User

To create a new user press the Create... button. Enter the information for the new user (the username must be unique within
the application). All other fields are optional.

Tool Reference

160

Figure 9.27. Creating a new user

For the email notification settings you can decide whether the user uses the defaults defined by the application (they are shown
in light gray if you choose so) or whether you want to define specific settings for the user. Note that each user can manipulate
these settings in the Workflow UI.

Email Notification Settings

It is possible to be notified if a new task is created that is related to you (either by direct assignment or by assignment to a role
you own). Furthermore, a daily digest mail with a summary of all open tasks can be sent to you by Axon.ivy.

Which language should be used for
the emails

Choose in which language you would like to receive the emails. If your preferred
language is not contained, please contact your Axon.ivy administrator.

Never (disable email notification) You can switch off the sending of all notification mails by ticking this checkbox. If
you do so, you cannot set the other options.

When a new task for me or one of
my roles is created

If this is set, you will receive a notification email whenever a new task is created that
is assigned either directly to you or to one of the roles you own.

Daily Summary on Choose the days on which you want to receive an email with a summary of all your
open tasks.

Tip

If you want that temporary no mails are sent (e.g. for holidays), then just tick the Never checkbox. The email
sending is now switched off, but the previous settings are still stored. As soon as you untick the Never check
box, your standard configuration is back again.

Editing an Existing User

You can change the details of an existing user by pressing the Edit... button. You can change all fields except the username.
If the password field is left blank, it will not be changed. Otherwise the password of the user will be overwritten with the
new value of the password field.

Deleting a User

To delete a user, press the Delete... button and confirm the deletion.

Tool Reference

161

Warning

Deleting a user will change the state of all tasks, for which the user is currently responsible, to UNASSIGNED!

All those tasks must be reassigned to another user or role by a workflow administrator or they will never be
finished.

Edit roles

Click the Roles... button to change the roles of a user.

You can add a role to a user by selecting the role from the list and then pressing Add. To remove a role, select it and press
Remove.

Some roles may not be editable. This can have multiple reasons:

• The role may be inherited (indicated by a grey checkbox and the text Inherited). A role is inherited if it is not explicitly set,
but the user owns a sub role (see example: Role 1 is inherited because user owns Role 1.1 and Role 1.3).

• You are using an external security system (e.g. ADS). In this case, you can not edit roles that are linked to a group on the
directory server. To add such a role, add the user to the corresponding group on the directory server.

Figure 9.28. Manage roles of a user

Properties

In this dialog it is possible to manipulate the properties of all users. Properties are key/value pairs that can be accessed at
runtime trough IvyScript. If using the internal security system of Axon.ivy (see Configuring an External Security System for
more information), then creation, editing and deletion are supported for all properties. If the users are synchronized with an
external data source such as an MS Active Directory and a mapping between attributes from the corresponding user in the
external system to the properties of the Axon.ivy user is configured, then editing and deletion of such properties is usually
prohibited by the external security system and therefore not possible within Axon.ivy. Just use the interface to the external
security system to manipulate the attributes directly there.

Tool Reference

162

Figure 9.29. User properties

Just use the Add button to create new properties, the Edit button to manipulate the property value and the Delete button to
remove the property again. Note, that editing of the value can be done directly in the table.

Edit Permissions / System Permissions

You can edit the permissions of a user by selecting the user and clicking Permissions... or System Permissions... respectively.

See section Permissions for more information.

Roles

Press the Show... button next to the number of roles on the Security System section of an application to see a list of all
existing roles.

The roles are defined in the projects that you deploy in your application. You can not add or delete roles on the engine!

The list shows the roles with their name plus, if available, the external security name in square brackets.

Figure 9.30. List of all roles

Users of a Role

To add or remove users of a role, click the Users... button. You should now see a list of users not owning the role on the left
and a list of user that do own the role on the right. You can move users with the buttons in the middle from one list to another.

Tool Reference

163

Note

When a user only inherits a role by owning a sub role thereof, the user will appear in the list of users not owning
the role.

When a role is linked to a group in an external security system, you will not be able to edit the users of a role.

Figure 9.31. Users of a role

Edit Permissions / System permissions

You can edit the permissions of a role by selecting a role and clicking Permissions... or System Permissions... respectively.

See section Permissions for more information.

External Security Name

If you are using an external security system (e.g. Microsoft Active Directory) then you can link an Axon.ivy role to a group or
another structural node (e.g. Organisation Unit) on the directory server. If a group is selected then all users that are members
of this group will automatically receive the associated Axon.ivy role. If a structural node is selected then all users located
below the structural node will automatically receive the associated Axon.ivy role.

Press External security name to edit or browse the name of the group or structural node whose users should receive the
selected Axon.ivy role.

Permissions

Permission Kinds

There are two kinds of permissions:

System Permissions System permissions are valid system wide, e.g. on the whole engine.

Permissions Regular permissions are valid only within the application for which they are defined.

Assignment of Permissions

You can assign different permissions and system permissions to each user or role.

A permission can either be granted, denied or unspecified (not granted). The actual permissions of an user depend on the
permissions set on the user itself and the permissions set on all roles that the user owns.

Grant permissions take precedence over Deny permissions, if set on the same level. On a user, inherited permissions can be
overridden with an explicit Grant or Deny.

Warning

Inherited Deny permissions have no effect if the user has an explicit Grant permission or another role on which
the permission is Granted. Explicit permissions always take precedence over inherited permissions.

Tool Reference

164

Figure 9.32. Editing the permissions of a user

System Properties

Configured by files

Since 7.2 the primary source of system properties are configurations set in files such as the “ivy.yaml”. If
properties are defined in files, changes in the Admin UI have no effect. But the actual values can still be viewed
here.

System properties are engine wide settings and are therefore valid for all applications. Be careful when changing those settings,
since some particular combinations of settings may stop the engine from working properly.

The system properties can be accessed through the button System Properties in the Engine section of the left navigation bar.

Figure 9.33. Overview of system properties

To change any properties, select the corresponding row in the table and press the Edit button or simply double-click on the row.

Tool Reference

165

Figure 9.34. Editing a system property

Note

Some settings may not take effect until you restart the engine.

Engine infos

Runtime information

Pressing the button Information in the Engine section of the left navigation bar will provide you with runtime information
about the engine. This includes memory usage and stack-traces for all running threads.

Figure 9.35. Runtime information

About

Pressing the button About in the Engine section of the left navigation bar will provide you with information about the version
of Axon.ivy Engine and your operating system.

Tool Reference

166

Figure 9.36. About

Control Center
The Control Center integrates all tools to configure the engine, the (Windows) service and to start/stop the installed Axon.ivy
Engine.

To open the Control Center application, go to your Axon.ivy Engine installation directory and launch the ControlCenter.exe
or the ControlCenter program located in the bin folder.

Launchers
The following program launchers are available for the Control Center program:

Platform Console support Launcher

Windows no bin/ControlCenter.exe

Windows yes bin/ControlCenterC.exe

Linux yes bin/ControlCenter

Table 9.13. ControlCenter Launchers

Start / Stop
To start the Axon.ivy Engine, simply choose the Axon.ivy Engine in the list on the left side and then press the green start
button.

Tool Reference

167

Alternatively, you can choose the Axon.ivy Engine [Console] from the list to start the engine within a console to which some
information about the engine is logged. Please note that closing this console window will terminate the Axon.ivy Engine
without shutting it down properly.

To stop the engine, click the red stop button.

Figure 9.37. The Control Center

Configuring Windows Service (Windows only)
If you've installed the Axon.ivy Engine under a Windows operating system, you can register it as a Windows service. To do
so, select the entry Axon.ivy Engine [Windows Service] from the list on the left and press the button Windows Service on
the right. A dialog will open, prompting you for additional configuration data:

Figure 9.38. Configuring Axon.ivy Engine as Windows service

First of all press Register Service to register the service and to enable the rest of the configuration sections.

Tool Reference

168

Tip

Service operations (register, unregister, start, stop) may fail because the current user does not own the necessary
rights. In this case close the Control Center and start it again by right clicking on the ControlCenter.exe and
choose the command Run as administrator from the context menu. After that, the service operation should
work.

Now you may configure the user under which the service (and therefore the Axon.ivy Engine) will be executed. This can be
either the system user or any other user with sufficient rights to start services and access the Axon.ivy Engine installation
directory (read and write).

By default, the service start kind is Manually. To start the engine each time Windows is booted, choose the setting
Automatically

The last thing that can be configured are the services that the Axon.ivy Engine depends on. This might be the database
management system on which the system database is located or the web server in which Axon.ivy is integrated (IIS or Apache).
All the services that you add in this list will be started before Axon.ivy and if any of these services fail to start, Axon.ivy
won't start too.

After you have finished the configuration, click Ok. Now you will be able to start the engine from the control center or you
may also use the Windows Service Management Console.

Testing the Engine
Once you've started the Axon.ivy Engine, try to open the following address in your preferred web browser: http://
ServerName:Port/ivy. If a web page with the Axon.ivy logo appears, the installation and configuration of the Axon.ivy
Engine was successful and you may continue with the next chapter.

Server List Configuration
The list with the engine types on the right may be extended by users. You may add other Axon.ivy Engine installations and
you even can integrate other third party tools to start them from the Control Center.

Note

The indication whether the program behind an entry in the server list is running or not is only shown for
the Axon.ivy Engine binaries of the installation the Control Center belongs to and for any Windows services
(including the Axon.ivy Engine services). This applies too for the show console setting because only Axon.ivy
Engine binaries can be started in a console (third party applications cannot).

Add opens a dialog to choose the type for the new entry. For integration of another Axon.ivy Engine binary or a third party
tool, choose the first option (ivyTeam based Server), if you intend to integrate an Axon.ivy Engine as a Windows service or
any other Windows service, then choose the second option (Windows Service based server.

Figure 9.39. Create a new server in the server list

Tool Reference

169

In the configuration dialog for a normal application you can set the base name and/or refine with the instance name (in the
server list the instance name is printed in brackets after the name). Add the server binary (or your third party tool) in the server
start executable and the configuration utility in the field configuration program (or the configuration program of your third
party application). If and only if you choose the console based binaries (the ones with "C" at the end of the file name, e.g.
AxonIvyEngineC.exe) then tick the check box Show console. It has no effect on all other binaries.

Figure 9.40. Create a new service in the server list

In the configuration dialog for adding/editing a service entry, you can choose an already existing service from the combo box
or set the service name when you did not already register the service. Set the configuration program and the service binary
similarly to the description above. For simply starting/stopping existing services from the Control Center, it is not necessary
to define the service binary

Note

The name in this dialog must be exactly the same name that is used to register the service. Otherwise the lookup
will not work.

Remove removes the selected entry from the list and Edit allows to edit the configuration for the selected entry in the server list.

170

Chapter 10. Troubleshooting
Troubleshooting

If you encounter any problems, check the following sources:

Axon.ivy Q&A The Axon.ivy Q&A contains a considerable amount of questions and answers related to Axon.ivy
Designer and Engine.

Stack Overflow Problems related to common technologies like Java, JSF, Primefaces are answered on the web, e.g.
on Stack Overflow.

Support You can get support via ivy@axonivy.com (support may be subject to charging, depending on your
licence agreement).

http://answers.axonivy.com/
http://stackoverflow.com/

	Axon.ivy 7.2
	Table of Contents
	Chapter 1. Introduction
	What is Axon.ivy
	Why Axon.ivy?

	About this guide
	Installation Environment
	Engine Types
	Axon.ivy Engine Standard Edition
	Axon.ivy Engine Enterprise Edition
	What engine edition do I need?

	Chapter 2. Getting Started
	Introduction
	Windows (with UI tools)
	Download the Engine
	Install the Engine
	Start the Engine
	Use the Engine
	Configure the Engine
	Deploy an Axon.ivy project to the Engine

	Debian Linux
	Install the Engine
	Examine the Engine
	Use the Engine
	Configure the Engine
	Deploy an Axon.ivy project to the Engine

	Linux (with console tools only)
	Prepare your Machine
	Install the Engine
	Start the Engine
	Use the Engine
	Configure the Engine
	Deploy an Axon.ivy project to the Engine

	Docker

	Chapter 3. Installation
	Upgrading from an older version
	Preparation
	Project Migration
	Upgrade

	Standard Edition Installation
	Demo Mode

	Enterprise Edition Installation
	Installation of the first engine node
	Installation of another engine node on a different machine
	Installation of another engine node on the same machine

	Install Axon.ivy Engine
	Installed Files and Directories
	Windows Programs
	Linux Programs

	Installing a Licence

	System Database
	Password Encryption
	Character set and collation
	Support case insensitive searches

	MySQL
	Information
	Configuration
	Creation
	Driver
	Character set & collation

	MariaDB
	Information
	Configuration
	Creation
	Driver
	Character set & collation

	Oracle
	Information
	Configuration
	Creation
	Driver
	Character set & collation

	Microsoft SQL Server
	Information
	Configuration
	Creation
	Driver
	Character set & collation

	PostgreSQL
	Information
	Configuration
	Creation
	Driver
	Character set & collation

	Chapter 4. Configuration
	Engine Configuration
	Files
	Template files

	System Database
	Users
	Email
	Html Theme
	Passwords
	Overriding Configuration
	Environment variables
	Global application values

	Docker Containers
	Secrets

	Configuration File Reference
	ivy.yaml
	app.yaml
	ivy.webserver.yaml
	ivy.cache.properties
	log4jconfig.xml
	web.xml
	context.xml

	Chapter 5. Security
	General
	Front-end Server
	Port Configuration
	Additional Security Headers
	Path Configuration
	Block URLs in IIS
	Block URLs in nginx
	Block URLs on the ivy Engine / Tomcat

	HTTPS
	Remarks

	Axon.ivy Engine
	Disable not required features
	Optional features
	Security Features

	Only grant ivy Permissions where required
	Security issues in the Axon.ivy Engine

	Chapter 6. Integration
	Introduction
	Integration Directory
	External base URL

	Apache Integration
	Windows example configuration
	Linux example configuration
	Change context URI /ivy/

	Microsoft IIS Integration
	IIS 8 (Windows Server 2012)
	Change context URI /ivy/
	Access multiple Axon.ivy Engines through one IIS
	Single Sign On
	IIS 8 (Windows Server 2012)
	Troubleshooting

	Basic Authentication
	IIS 8 (Windows Server 2012)

	Error Handling

	Axon.ivy Cluster Integration
	Load Balancing with Tomcat connector (IIS, Apache)
	Example

	Load Balancing with other Load Balancer Products

	Web Application Firewall
	Single Sign On

	Chapter 7. Administration
	Deployment
	Prepare
	Deploying
	Check the results
	Advanced Deployment
	Configure Application
	Versioning
	Deployment Options

	Maven Plugin
	Command line deployment
	Build goal execution

	Standard Processes
	Implementation
	Default Pages
	Email Notifications
	Implementation hints

	Miscellaneous
	GC Optimization
	Default GC configuration
	Optimization for JSF

	System Database Encryption
	Replacing Java Runtime with newer version

	Chapter 8. Monitoring
	Logging
	Log Message Format
	Runtime Log
	Example

	Request/Performance Logging

	Process Element Performance Statistic and Analysis
	Configure Process Element Performance Statistic on Axon.ivy Engine
	Analyse the Performance Statistic

	Java Management Extensions (JMX)
	Activate Remote Access
	Auto Discovery (JDP)
	Provided MBeans

	VisualVM
	Axon.ivy Plugin for VisualVM
	Installation

	Chapter 9. Tool Reference
	AxonIvyEngine
	Options
	Launchers

	EngineConfigCli
	Options

	Engine Service
	Windows Service
	Launchers
	Options

	Linux Service (systemd)
	Launchers

	Launch Configuration
	Windows Program Launcher Configuration
	Linux Launcher Configuration
	AxonIvyEngine.conf

	Engine Configuration UI
	Launchers
	Via Control Center

	Options
	Licence
	System Database
	Create new System Database
	Convert an old System Database

	System Administrators
	Web Server Ports
	Cluster

	Admin UI
	Opening the administration tool
	Applications
	Create new application
	Configuring an External Security System

	Application Default Settings
	Email Notification Settings
	Email Notification Settings

	Email Content Creation Processes
	Default Executed Processes

	Process Models and Process Model Versions
	The Concept of Versions
	Creating Process Models and Process Model Versions
	Manage Activation and Release State
	Release States
	Activation states

	Project dependencies

	Deployment wizard
	Business Calendar
	Business Calendar Definition
	Start of Week
	Working Time
	Free Days of Week
	Free Days of Year
	Free Easter Relative Days
	Free non-recurring Dates

	Environments
	Configuration of environments
	Global Variables
	External Databases
	Web Services
	REST Clients
	Business Calendar
	Export/Import Environment(s)

	Users and Roles
	User list
	Creating a New User
	Email Notification Settings
	Editing an Existing User
	Deleting a User
	Edit roles
	Properties
	Edit Permissions / System Permissions

	Roles
	Users of a Role
	Edit Permissions / System permissions
	External Security Name

	Permissions
	Permission Kinds
	Assignment of Permissions

	System Properties
	Engine infos
	Runtime information
	About

	Control Center
	Launchers
	Start / Stop
	Configuring Windows Service (Windows only)
	Testing the Engine
	Server List Configuration

	Chapter 10. Troubleshooting
	Troubleshooting

