
Axon.ivy 7.2

Axon.ivy Portal Documentation

Axon.ivy 7.2: Axon.ivy Portal Documentation

Publication date 05.11.2018
Copyright © 2015-2018 AXON Ivy AG

iii

1. Introduction .. 1
Main features ... 1
Reference architecture .. 1

2. Installation ... 3
Release installation .. 3
Basic installation ... 3
Migration notes .. 9
Release notes .. 13

3. Architecture .. 16
 .. 16
Portal kit .. 16
Portal style ... 16
Portal template .. 17
Self service BPM .. 17
Axon.ivy Express .. 17
Portal connector .. 17

4. Components .. 18
Widget concept ... 18
Layout templates ... 22
Enable Portal chat ... 35
Error handling .. 36
Additional Components .. 40
Change Last Drilldown Level Of Task By Expiry Chart .. 46

5. Customization ... 48
Build your own portal .. 48
PortalStyle customization (logos, colors, date patterns) .. 52
Login .. 54
Menu .. 54
Portal home .. 56
Task widget ... 59
Case widget ... 66
Default user process .. 72
Default chart .. 74
Change password process ... 75
Logout process ... 78
Express end page .. 79
Navigate back ... 80
Hide technical stuffs .. 81
Additional case details page .. 82
Global Search Result ... 84

6. Settings .. 86
 .. 86
Admin settings .. 86
Absence and substitute settings .. 94
Email settings ... 98
Language settings .. 99

7. Troubleshooting ... 103
 ... 103
IE Security Problem ... 103
Portal install with IIS ... 103

1

Chapter 1. Introduction

Main features
• Central access for end users - Only one portal for all applications

• Repository of reusable components

• Fast integration of process applications to the portal

• Provide customers and other system vendors the flexibility to build their own portals, but reuse portal components of Ivy

Reference architecture
The following image describes the reference architecture of the Portal Kit:

• Organize Ivy Landscape in more Ivy engine based on

• Critical Process Apps

• Support Applications

• Ivy Landscape shares a Company wide LDAP

• Ivy Landscape shares a Landscape wide DB for centralize settings

Introduction

2

3

Chapter 2. Installation
Release installation

Installation
The installation section describes all the steps, that are necessary to install and setup the Process Application.

If you install the application for the first time than it's important to start with the Basic installation . It describes all the initial
steps, that must be done for the first installation.

Release Installation
If the application is already installed and initial prepared, than refer to the Release Installation Steps, that are provided, here
you will only find those steps, that are necessary to install this release.

Basic installation

Project modules
The application consists of 5 process modules. For detailed information of each module, refer to Architecture .

• PortalStyle

• PortalKit

• PortalTemplate

• SelfServiceBpm

• AxonIvyExpress

The project deployment of Ivy project are described in project deployment .

Server configuration
• The minimum required engine version is 6.0.0.49863

Add required libraries
Portal needs Apache POI for exporting to Excel features. Follow these steps to add Apache POI libraries:

1. Copy libraries below and then paste into webapps/ivy/WEB-INF/lib folder located on AxonIvyEngine,
AxonIvyDesigner.

Note
You can find libraries inside AxonIvyDesigner folder, under configuration/
org.eclipse.osgi (search libraries in this directory), or download from this site.

• poi-3.15.jar

• poi-ooxml-3.15.jar

• poi-ooxml-schemas-3.15.jar

• xmlbeans-2.6.0.jar

http://developer.axonivy.com/doc/latest/EngineGuideHtml/administration.html#administration-deployment
https://poi.apache.org
documents/Export/poi-3.15.jar
documents/Export/poi-ooxml-3.15.jar
documents/Export/poi-ooxml-schemas-3.15.jar
documents/Export/xmlbeans-2.6.0.jar

Installation

4

2. Restart AxonIvy Designer/Engine.

Specify servers, applications used in Portal

General concept

Portal has 3 different configurations:

• Single mode : Only one Portal application on one engine. The Portal application must include portalKit, portalTemplate
and portalStyle modules. By default, portalConnector is already deployed on the System application of Axon.ivy engine.

• Multi applications on single engine mode : Multiple Portal applications on one engine. Each Portal application must
include portalKit, portalTemplate and portalStyle modules. Only one portalConnector of the System application is needed.

• Multi applications on multi engines mode : Single or multiple Portal applications on multiple engines. The engines will
communicate with each other via the portalConnector of their System application (This mode is not supported yet).

Important

• In single mode, if you deploy a new Portal application with a customer project, you need to deactivate the
standard Portal application.

• In multi applications on single engine mode, if you do not need overall dashboard, deactivate the standard
Portal application. Otherwise, keep the standard Portal application activated.

Automatically detect servers, applications

By default, PortalKit will connect to PortalConnector using the address specified by the system property
WebServer.HTTP.Address . If the property is not set, PortalKit will use the address localhost to connect to
PortalConnector. All applications of the server which have the logged-in user are used in Portal.

Note
System property WebServer.HTTP.Address specifies the address that will listen on the ivy engine port.

Steps to set the system property WebServer.HTTP.Address

1. Open AdminUI and go to System Properties.

2. Set the WebServer.HTTP.Address property to the value of the address that will be used to connect to
PortalConnector.

3. Restart the ivy engine.

Installation

5

Manually configure servers, applications

Refer Setup multi portals .

Default user credentials
Portal provides 3 default users:

Username Password Description

admin admin This user has all Portal permissions, can
access to Portal Admin Settings.

demo demo This user has permission to manage user
absences.

guest guest Default normal user of portal.

Table 2.1. Default user credentials

Tip
You can change these accounts info in the AdminUI.

Role configuration

PortalKit roles Rights

AXONIVY_PORTAL_ADMIN User belong to this role can handle AdminUI page, configure
the internal role properties, create public filters. Users who
own this role need some permissions. See Permission settings
.

Table 2.2. Role configuration

Permission settings

Absences

• READ

This function will be disabled if session user does not have IPermission.USER_READ_OWN_ABSENCES and
IPermission.USER_READ_ABSENCES.

• CREATE/MODIFY

This function will be disabled if session user does not have IPermission.USER_CREATE_OWN_ABSENCE and
IPermission.USER_CREATE_ABSENCE.

• DELETE

This function will be disabled if session user does not have IPermission.USER_DELETE_OWN_ABSENCE and
IPermission.USER_DELETE_ABSENCE.

• MANAGE EVERY USER ABSENCES

User can read, add, delete absences of all users. This function will be disabled if session user does not have all of the
following permissions: IPermission.USER_CREATE_ABSENCE , IPermission.USER_DELETE_ABSENCE ,
IPermission.USER_READ_ABSENCES.

Installation

6

Substitute

• CREATE OWN SUBSTITUTE

This function will be disabled if session user does not have IPermission.USER_CREATE_OWN_SUBSTITUTE and
IPermission.USER_CREATE_SUBSTITUTE.

• MANAGE EVERY USER SUBSTITUTES

This function will be disabled if session user does not have IPermission.USER_CREATE_SUBSTITUTE or
IPermission.USER_READ_SUBSTITUTES.

Personal task permission

• DELEGATE

User can delegate his personal or group tasks if he has permission TaskWriteActivatorOwnTasks (This permission
belongs to Portal permission group). User can delegate all the tasks he see in his task list if he has permission
IPermission.TASK_WRITE_ACTIVATOR .

Important
Task state cannot be one of the following: DONE , DESTROYED , RESUMED , FAILED .

• ADD NOTE

No permission requires.

Important
Task state cannot be one of the following: DONE , DESTROYED , RESUMED , FAILED .

• RESET

This function will be enabled if session user has permission IPermission.TASK_RESET_OWN_WORKING_TASK or
IPermission.TASK_RESET .

Important
Task state has to be one of following: RESUMED , PARKED .

• PARK

This function will be enabled if session user has permission IPermission.TASK_PARK_OWN_WORKING_TASK .

Important
Task state has to be RESUMED .

• CHANGE TASK NAME

This function will be enabled if session user has IPermission.TASK_WRITE_NAME .

Important
Task state cannot be one of following values: DONE , DESTROYED , FAILED .

• CHANGE TASK DESCRIPTION

This function will be enabled if session user has IPermission.TASK_WRITE_DESCRIPTION .

Installation

7

Important
Task state cannot be one of following values: DONE , DESTROYED , FAILED .

• CHANGE DEADLINE

This function will be enabled if session user has IPermission.TASK_WRITE_EXPIRY_TIMESTAMP .

Important
Task state cannot be one of following values: DONE , DESTROYED , FAILED .

• CHANGE PRIORITY

This function will be disabled if session user does not have IPermission.TASK_WRITE_ORIGINAL_PRIORITY .

Important
Task state cannot be one of following: DONE , DESTROYED , FAILED .

Personal case permission

• ADD NOTE

Add note function will be enabled if case state is RUNNING .

• DELETE CASE

Delete case function will be enabled if session user has IPermission.CASE_DESTROY .

Important
Case state has to be RUNNING .

• CHANGE CASE NAME

Delete case function will be enabled if session user has IPermission.CASE_WRITE_NAME .

Important
Case state cannot to be: DESTROYED.

• CHANGE CASE DESCRIPTION

Delete case function will be enabled if session user has IPermission.CASE_WRITE_DESCRIPTION .

Important
Case state cannot to be: DESTROYED.

• SEE RELATED TASKS OF CASE

Session user can see all related tasks of case if he has IPermission.TASK_READ_OWN_CASE_TASKS or
IPermission.TASK_READ_ALL .

Important
Case state cannot to be: DESTROYED.

Installation

8

Upload/delete document permission

Upload/delete document function will be enabled if session user has IPermission.DOCUMENT_WRITE or
IPermission.DOCUMENT_OF_INVOLVED_CASE_WRITE.

Express Workflow permission

• CREATE EXPRESS WORKFLOW

Create Express Workflow function will be enabled if session user has
PortalPermission.EXPRESS_CREATE_WORKFLOW (This permission belongs to Portal permission group, assigned
to role Everybody by default).

Statistics permission

• ADD DASHBOARD CHART

Add new charts function will be enabled if session user has
PortalPermission.STATISTIC_ADD_DASHBOARD_CHART (This permission belongs to Portal permission group,
assigned to role Everybody by default).

• ANALYZE TASK

Filter tasks and export data to excel for advanced analysis. This function will be enabled if session user has
PortalPermission.STATISTIC_ANALYZE_TASK (This permission belongs to Portal permission group, assigned
to user admin by default).

Administrator permission can see all tasks/cases in the application

Normal users can only see their tasks/cases they can work on.

Administrator can see all tasks/cases in the application.

Permissions needed: IPermission.TASK_READ_ALL , IPermission.CASE_READ_ALL .

Administrator permission can interact with all workflows in the
application

Normal users can updates and deletes workflows which created by him and can interact with workflow's task which assigned
to him.

Administrator can creates, updates and deletes all workflows in the application.

Global variables

Variable Default value Description

PortalStartTimeSynchUserExpression 0 0 5 * * ? Cron expression define the time to reload
application user datas. E.g.: expression
for at 5AM every day is 0 0 5 * * ? .
Refer to crontrigger . Restart Ivy engine
after changing this variable.

PortalCallWebserviceMaxRetry 10 Maximum time that PortalConnector
will retry to synchronize data to
Portal on the system. If beyond this
limit, system will create a Task for
AXONIVY_PORTAL_ADMIN role to
handle this error.

http://quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/crontrigger

Installation

9

Variable Default value Description

PortalSearchDelayInMilliseconds 500 The delay time of search function at top
menu.

PortalStartTimeCleanObsoletedDataExpression0 0 6 * * ? Cron expression define the time to
clean up data of obsoleted users. E.g.:
expression for at 6AM every day is 0 0
6 * * ? . Refer to crontrigger . Restart
Ivy engine after changing this variable.

Table 2.3. Global variables

Look and feel
Portal doesn't use Modena theme from version 6.3.

All dialogs in Portal and screens of Self service BPM and Axon.ivy Express have following buttons orders:

• Yes/Ok buttons on the left, No/Cancel buttons on the right

Migration notes
This document informs you in detail about incompatibilities that were introduced between Portal versions and tells you what
needs to be done to make your existing Portal working with current Axon.ivy engine.

How to migrate

Important
In order to migrate Portal, you need to migrate Axon.ivy, refer Axon.ivy migration notes. Changes in Axon.ivy
could lead to problems if the customer project is not migrated properly.

In designer

1. Replace all Portal projects

2. Update PortalTemplate dependency of customer project in pom.xml.

3. If PortalStyle is customized, copy logo, customization.less, font-faces.less, customized stuff from old to new PortalStyle,
run maven to compile CSS.

4. Follow migration notes.

5. If customization needs copying code from Portal, merge changes between 2 version of Portal for copied code.

Important

• Scenario migrating one customer project without customization: Follow the guidelines to step 2.

• Scenario migrating one customer project with supported customization: Follow the guidelines.

• Scenario migrating one customer project with (un)supported customization: Follow the guidelines for
supported customization. If unsupported customization needs copying code from Portal, merge changes
between 2 versions of Portal for copied code. Take care your own unsupported customization.

In engine

1. Convert database schema if needed.

http://quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/crontrigger
http://www.primefaces.org/eos/modena/
https://developer.axonivy.com/doc/latest/MigrationNotes.html

Installation

10

2. Deactivate standard Portal application if it is not needed.

3. Redeploy Portal projects (exclude PortalConnector) and customer project.

4. Follow migration notes to migrate data, if any.

Migrate 7.1.0 to 7.2.0
Portal needs Apache POI for exporting to Excel features. Refer to Add required libraries.

If you overrode task widget's data query described at How to override task widget's data query, follow these steps to migrate

• Add new start method with signature buildTaskJsonQuery(Boolean) in your overridden file of
BuildTaskJsonQuery.mod (refer to original file BuildTaskJsonQuery.mod).

• If you customized TaskLazyDataModel, change withStartSignature("buildTaskJsonQuery() to
withStartSignature("buildTaskJsonQuery(Boolean)").withParam("isQueryForHomePage",
compactMode) in your customized TaskLazyDataModel class.

There are some changes (DefaultApplicationHomePage, DefaultLoginPage, GlobalSearch) in PortalStart process of Portal
Template. If you have customized this process in your project, copy the new PortalStart from Portal Template to your project
and re-apply your customization.

Important

In case you already have PortalStart process in your project, delete all elements in that process and copy
everything from PortalStart process of Portal Template (to prevent start link id change). Do not delete
PortalStart proccess in your project and copy new again.

Check map param result of callable process after copy to make sure it's the same as original process.

https://poi.apache.org

Installation

11

EXPIRY_CHART_LAST_DRILLDOWN_LEVEL global variable is removed. User now can use a context menu to drilldown
Task By Expiry chart.

Migrate 7.0.3 to 7.0.5 (or 7.1.0)
There are some changes in PortalStart process of Portal Template. If you have customized this process in your project, copy
the new PortalStart from Portal Template to your project and re-apply your customization.

We introduce new method findStartableLinkByUserFriendlyRequestPath(String requestPath) in
ProcessStartCollector class. If your project has customized Default user process, use this method to generate link to
your process. If user doesn't have permission to start the process, this method will return empty string.

Important

In case you already have PortalStart process in your project, delete all elements in that process and copy
everything from PortalStart process of Portal Template (to prevent start link id change). Do not delete
PortalStart proccess in your project and copy new again.

Check map param result of callable process after copy to make sure it's the same as original process.

Migrate 7.0.2 to 7.0.3
If you have additional columns in your customized task widget, refer Task widget to adapt your customization in
taskHeader section.

Migrate 7.0.1 to 7.0.2
In PortalStyle\pom.xml, update project-build-plugin version to 7.1.0 and run maven to compile CSS.

Installation

12

If changing password is customized, change method call
PasswordService.mod#changePassword(String,String) to
PasswordService.mod#changePasswordService(String, String) in this customization.

Custom fields in Portal task list can now be sorted properly. The method extendSort() of TaskLazyDataModel is
changed to have a taskQuery parameter. If you override this method, change your code to use the new parameter instead
of using the queryCriteria taskQuery.

Portal does not have separate full task list in the homepage anymore. It's mean that you don't have to customize the
task list in /layouts/DefaultHomePageTemplate.xhtml. You can remove your task list customization code in
PortalHome.xhtml.

If you have added new language to Portal by adding cms entry /AppInfo/SupportedLanguages in your project. Move
this entry to Portal Style.

Migrate 7.0.0 to 7.0.1
Ajax error handling: By default, Portal handles all exceptions from ajax requests. Old configuration, customization of ajax
error handling should be removed.

Migrate 6.x to 7.0.0
If you copy the PortalStart process or the PortalHome HTMLDialog for customizations, adapt the changes:

• The whole process is refactored to be clearer. So it is recommended that you copy it again.

• New process is introduced: restorePortalTaskList.ivp

• PortalStart: some new ivy scripts are added to handle the navigation back to the same page before starting a task.

• PortalHome: The taskView parameter is added to the start method.

SQL conversion

From Portal 7.0 , we use standard axon.ivy Task Category field to store task category.

To migrate task categories, deploy MigrateTaskCategorySample.iar to your application and run Migrate Task
Category process to:

1. Migrate data from column customVarCharField5 to category for all tasks in the application.

2. Delete leftover data in customVarCharField5 of all tasks in the application.

3. Create CMS entries for task categories in the application.

If you have queries which referring to task category, plese replace customVarCharField5() part with category()
part.

Migrate 6.4 or 6.5 to 6.6
• Task header is supported to be customized. The useOverride param, which is used to override the task item's body,

is changed to useOverrideBody

• If you customize TaskLazyDataModel, remove that customized class and customize as How to override task widget's
data query.

Migrate 6.4 to 6.5
• If compilation error "The type org.apache.axis2.databinding.ADBBean cannot be resolved" occurs, refer Project

compilation classpath to fix.

documents/MigrateTaskCategorySample.iar
https://developer.axonivy.com/doc/latest/doc/migrationNotes/MigrationNotesDesigner7.0.html#projectClasspath
https://developer.axonivy.com/doc/latest/doc/migrationNotes/MigrationNotesDesigner7.0.html#projectClasspath

Installation

13

• The relative link in default user processes starts with ivy context path instead of "pro". If there are customized
default user proceses, append context path at the beginning. E.g. in Portal 6.4, it is /pro/.../PortalStart.ivp.
In Portal 6.5, change it to /ivy/pro/.../PortalStart.ivp. You may use : ivy.html.startref(...) or
RequestUriFactory.createProcessStartUri(...) to generate links.

Migrate 6.x (x < 4) to 6.4 (Jakobshorn)

Portal appearance

Portal 6.4 are redesigned. Therefore many components look different from the previous version like menu, task list, case
list Portal BasicTemplate does not use p:layout and p:layoutUnit anymore. You may need to adapt your
pages to this change.

For now the menu customization is not supported.

From 6.4 , Portal applies LESS to support customizing Portal styles. You can customize colors, fonts and Portal's component
styles. For more information about customizing Portal's style with LESS, refer to PortalStyle customization (logos, colors,
date patterns) .

Steps to migrate

1. Copy PortalStyle/webContent/resources of Portal 6.4 to PortalStyle/webContent/resources of the current Portal.

2. Modify PortalStyle/webContent/resources/less/theme.less, update value of @body-background-color for the background
color and @menu-color for the menu, button color.

3. Put custom styles to PortalStyle/webContent/resources/less/customization.less.

4. Add properties and plugins which are defined in PortalStyle/pom.xml of Portal 6.4 to PortalStyle/pom.xml of the current
Portal.

5. Run the maven command mvn lesscss:compile in PortalStyle to build CSS file.

6. PortalStyle/webContent/resources/css/theme.css is obsolete, remove it.

Migrate 5.0 (Rothorn) to 6.0 (Säntis)

Database conversion

If you are using Portal 5.0 , you have to manual configure all settings (create servers, applications, variables) again since
Portal now doesn't use external database. All settings on from Portal 6.0 are stored in Ivy system database. If you are using
Portal 6.0 , you don't need to convert database.

Portal appearance

Portal now doesn't use Modena theme, it's a big difference to previous 6.0 . Therefore many things in Portal 5.0 and 6.0
will not look the same in new Portal. Many things have been redesigned like menu, task list, case list ...

Release notes
This part lists all relevant changes since the last official product releases of Axon.ivy.

Changes in 7.2
• Introduced the variables to customize task priority and state colors and header bar colors

• Introduces the new page: Global search result, and supports the customization

http://lesscss.org/
http://primefaces.org/eos/modena

Installation

14

• Overrides the DefaultApplicationHomePage.ivp, DefaultLoginPage.ivp, DefaultEndPage.ivp processes, refer to
Replacement Project, check migration notes if you have the customized PortalStart.ivp process.

• Portal checks permission when upload/delete document. User needs permission IPermission.DOCUMENT_WRITE or
IPermission.DOCUMENT_OF_INVOLVED_CASE_WRITE to upload/delete document.

• Support to disable upload/delete document when a case is done. This function can be configured by
HIDE_UPLOAD_DOCUMENT_FOR_DONE_CASE setting.

• Support to configure upload file extension whitelist. Only file extensions appear in this list are allowed to upload to Portal.
This function can be configured by UPLOAD_DOCUMENT_WHITELIST_EXTENSION setting.

• Support script checking function for upload file. You can enable/disable this function by configuring
ENABLE_SCRIPT_CHECKING_FOR_UPLOADED_DOCUMENT setting.

Changes in 7.1
• Portal supports client side timeout: informs user when session is about to expire and auto logout when expired.

• Hide technical cases (the HIDE additional property is set), so that they and their related task are not displayed in any Portal
case lists.

• More search criteria for user in Case list are added and allowed to customize.

• User can add new language. Refer to Language settings for detail.

• Axon ivy express has custom end page. It can be turned off or customized.

• User can create default start process with permission check. If the user doesn't have permission to start the process, it won't
appear in favorite processes. Refer to Default user process for detail.

Changes in 7.0 (Jakobshorn)
• More search criteria for user in Task list are added and allowed to customize.

• Task delegate customization is supported

• The same task list is displayed before and after a task. Set default end page to another project to remove this feature.

• Task category of Portal is now stored in new Task category field of ivy.

Refer to Migration notes to learn how to migrate data from customVarCharField5 to new category field.

• Hide technical tasks (the HIDE additional property is set), so that they are not displayed in any Portal task lists.

• Change password is supported to be customized. Refer to Change password process to know how to customize this feature.

Changes in 6.6 (Jakobshorn)
• Task widget's customization is extended with task header and task data query.

• Hide technical roles (the HIDE property is set), so that they are not displayed anywhere (e.g. delegate, absence mgmt). The
default hidden role is AXONIVY_PORTAL_ADMIN

Changes in 6.0 (Säntis)
• Portal has 2 level menu with animation.

• All components such as button, text field ...have been re-styled, not applied Modena's styles.

https://developer.axonivy.com/doc/latest/EngineGuideHtml/administration.html#ServerAdministration-htmlworkflowui

Installation

15

• Portal supports responsiveness with 3 screen widths: 1920, 1366 and 1024. Refer to Responsiveness for more details.

• Some customizations are not supported in this release: main menu, case header.

16

Chapter 3. Architecture
Currently Portal system contains 6 modules

Portal kit
Contains set of UI components. This module contains set of JSF Ivy Component to provide user the usages to work with
Ivy Process Data such as: task, case, absence... , styles CSS and JavaScript file for component and Modena theme library.
This is the most important module that user needs to use Portal. This module also contains AdminSettings component that
is used to configure Portal.

Portal style
Contains definition of styles that can be overridden/customized later. As now Portal supports user to customize various colors
of the layout such as: background color, text color, border color, button color, focus/hover color. In the current version you
have to change each color one by one. There are no common color definitions.

Note
This module is prepared for process developers to override and keep customer styles by editing CSS file, CMS's
style.

Architecture

17

Portal template
Provides default portal's templates and pages. This module contains templates page for Portal's user to use as composition,
then they will have supporting features such as : top menu, application menu, user menu. It also contains some start process
links to default page such as : Portal home, Portal task list, Portal case list... . Portal's user is advised to depend on this module
to use Portal easily.

Self service BPM
This project extends PortalTemplate and is a utility which implements concept of Adaptive Case Management. The idea is
that user can start any cases and add simultaneously new roles and tasks while doing his process work.

Axon.ivy Express
The idea is that user can create his own process and can manage it easily, it gives user more flexibility when working with
Portal.

This project is an extended project from PortalTemplate. It provides:

• Ability to create his/her own workflow

• Tools to create and modify the web form for his workflow

Portal connector
Communication channel to communicate between portal axon.ivy engine (e.g.: for synchronizing data, read ivy process data
like task, case, absence, substitute,...). This module acts like service layer that contains web service's implementation for
PortalKit to call and get data, only PortalKit knows about these web services.

Note
By default, this module is integrated to System application of Axon.Ivy engine. To be able to run Portal in
designer, you need to import this module.

18

Chapter 4. Components
Widget concept
Before beginning

This guide assumes that you are already familiar with concepts inherent in JSF programming and in Ivy development.

Introduction
This document provides a high-level explanation of how to develop a Portal widget. The ability to use Portal services and
styles can be particularly useful to developers who wish to do one or more of the following:

• Create their own widgets for Portal which have a consistent look and feel with the existing widgets.

• Reuse existing portal services to create their own widgets which can manipulate Portal data, such as: cases, tasks, process
starts, users,...

How it is
This section introduces the Html Dialog Component and Portal services, predefined styles used in building a widget, and goes
on to describe the process of designing and implementing.

Portal widgets should be implemented using the Html Dialog Component technology from Axon.ivy and follow the famous
model-view-controller pattern.

Furthermore, to have a clean architecture and avoid a lot of headaches going forward, we suggest that you should separate
your widget into layers like below:

• Entities

Entities are the business objects of the widget. They encapsulate the most general and high-level rules. They are the least
likely to change when something external changes. (e.g.: by a change to page navigation, or security).

• Use Cases

Use case are widget specific business rules. This layer encapsulates and implements all of the use case of the widget.
Changes in this layer should not affect the entities. This layer should not be affected by changes to externalities such as the
Portal services, the UI, or any of the common frameworks.

• Interfaces Adapters

Interfaces Adapters are set of adapters that convert data from the format most convenient for the use cases and entities, to the
format most convenient for some external agency such as the database or the web. Similarly, data is converted, in this layer,
from the form most convenient for entities and use case, into the form most convenient for whatever persistence framework
is being used. (The presenters, views, and controllers all belong in here. The models are likely just data structures that are
passed from the controllers to the use case, and then back from the use cases to the presenters and views.)

• Frameworks and Drivers

This layer is generally composed of frameworks and tools such as the database, the web framework, Portal services, etc.
This layer is where all the details go. The Web is a detail. The Portal services are detail. We keep these thing on the outside
where they can do little harm.

Tip

There's no rule that says you must always have just the four layers above. However, you should always apply
that the source code dependencies point from mechanisms to policies:

Components

19

Frameworks and Drivers > Interfaces Adapters > User Cases > Entities

By doing so, you will create a widget that is intrinsically testable, independent of frameworks, independent of
UI, independent of database, and independent of any external agency. When any of the external parts of the
system become obsolete, like the database, or the web framework, you can replace those obsolete elements with
a minimum of fuss.

Main technology and concept
You should have an understanding of the following technology and concept as you build your widget:

• Managed Beans: in Html Dialog Component it is possible to communicate with normal Java Objects by using Managed
Beans.

• User Dialog Concept: an Html Dialog Component follows the model-view-controller pattern of the User Dialog Concept.

• Model is a data class whose data fields can be bound to widget properties of the view via the special object data.

• Controller is implemented by a series of UI processes that can be mapped to events on the view such as mouse clicks.
Axon.ivy provides the keyword logic to call an event process or a method process in the logic.

• View of an Html Dialog is defined with the means of an XHTML document.

Services
There are separate services for working with each type of data:

• Application Services: set of services for getting information about applications.

• Absence Services: set of services for manipulating the user's absence.

• Case Services: set of services for working with cases and related data, such as: additional properties, notes,...

• Task Services: set of services for working with tasks.

• Process Start Services: set of services for querying process starts from the Portal system.

• Security Services: set of services for querying users and roles.

• User Setting Services: set of services for manipulating the user settings and related data, such as: email settings, language
settings.

• Portal Configuration Services: set of services for controlling the Portal configuration.

Built-in widgets
Portal comes with some useful widgets:

1. Task widget

Below is the sample how the task widget being use in the default template:

<ui:define name="taskWidget">

<ic:ch.ivy.addon.portalkit.component.TaskWidget id="task-widget"
tasks="#{logic.getTasksOfSessionUser()}" ... />

</ui:define>

2. Process widget

Below is the sample how the process widget being use in the default template:

Components

20

<ui:define name="processWidget">

<ic:ch.ivy.addon.portalkit.component.ProcessWidget id="process-widget"
compactMode="true">

</ui:define>

3. Statistic widget

Below is the sample how the statistic widget being use in the default template:

<ui:define name="statisticWidget">

<ic:ch.ivy.addon.portalkit.component.StatisticWidget id="statistics-widget"
compactMode="true" ... >

...

</ic:ch.ivy.addon.portalkit.component.StatisticWidget>

</ui:define>

Portal setup these widget with the default settings for you, but you can always re-define them in order to match with your
needs. Moreover, if you want to turn off a built-in widget, you can simply leave its ui:define container empty like this:

<ui:define name="taskWidget">

<!-- leave it empty -->

</ui:define>

Predefined styles
There are separate common styles are predefined to ensure every Portal widget has a consistent structure and appearance:

<div class="widget">

<div class="widget-header">

<ul class="widget-header-menu">

<li class="widget-header-menu-item">...

<li class="widget-header-menu-item">...

<li class="widget-header-menu-item">...

...

...

</div>

<div class="widget-content">

<div class="widget-content-list">

<div class="widget-content-list-item">...</div>

<div class="widget-content-list-item">...</div>

<div class="widget-content-list-item">...</div>

Components

21

...

</div>

</div>

<div class="widdget-footer">

...

</div>

</div>

Flow
The general flow for developing a widget for portal is as follows:

1. Design your widget, deciding which parts to implement in Ivy component, and which parts to implement as pure JSF.

2. Create an Html Dialog Component.

The following code fragment defines an example Html Dialog component:

<cc:interface componentType="IvyComponent">

<cc:attribute name="caption" />

</cc:interface>

<cc:implementation>

...

</cc:implementation>

A component could be inserted with the ic tag.

<ic:my.namespace.ComponentName ... />

For more information, see the Html Dialog Component section in Axon.ivy Designer - Help: Designer Guide > User
Interface > User Dialogs > Html Dialogs

3. If you are writing a widget, which manipulates task, case,... consider using Portal built-in services.

4. Optionally, your widgets can have their own configuration. There are separate methods for manipulating widget
configuration:

• You can initiate or update your widget configuration by passing an JSON object to saveSettings().

• You can load your widget configuration by calling loadSettings().

Integration
The general flow for integrating a widget into Portal homepage is as follows:

1. Create a new home page which uses the DefaultHomePageTemplate.xhtml template. By doing this, your new
home page will inherit the widget from the previous home page and has a place holder for your own widgets. Your
custom home page should look like below:

<ui:composition template="/layouts/DefaultHomePageTemplate.xhtml" xmlns="http://
www.w3.org/1999/xhtml"

Components

22

xmlns:f="http://xmlns.jcp.org/jsf/core" xmlns:h="http://xmlns.jcp.org/jsf/html"

xmlns:ui="http://xmlns.jcp.org/jsf/facelets" xmlns:ic="http://ivyteam.ch/jsf/
component">

<ui:define name="customWidget">

...

</ui:define>

</ui:composition>

2. Create a new process start for the new home page. Now you will use this process start as the entry point of your portal
instead of the default one. To let portal know about your new portal home, you have to go to the portal settings and set
the portal home url to the new one.

3. In your new home page, place your widget inside the customWidget section.

<ui:define name="customWidget">

<ic:my.namespace.ComponentName ... />

...

</ui:define>

For more details, visit Portal home.

Exception handling
Portal separates exception into 2 types: ajax and non-ajax exception.

Portal handle non-ajax exception for you. You do not need to do anything for this type of exception.

Portal also handle ajax exception for you as default, but you can implement your own exception handler by using the
Primefaces built-in exception handler: p:ajaxExceptionHandler.

Layout templates
Templates for development

Your Portal Project is dependent on PortalTemplate project, in which there are 7 templates that can be used directly.

1. Basic template

2. Two column template

3. Task template

4. Case template

5. Task list template

6. Case list template

7. Default homepage template

These templates have the same header, which is a menu of applications that you configure in Administration page. Since
version 6.4, Portal officially supports responsiveness for 3 resolutions: iMac (1920*1050), iPad (1366*1024) iPad Portrait:
(1024*1366), every templates has its default responsiveness, you can refer to Responsiveness to override it. Besides, there

Components

23

are user settings like: Absences, Email, Language Settings and Administration (for admin only). Details about user settings
can be found in Settings.

Basic template
Basic template provides basic layout where user can put their custom content. It lacks Portal menu and Case details. We
recommend to use task template for your process.

How to use Basic template

1. Create a new HTML User Dialog and then use ui:composition to define the template inside and reuse the
default responsiveness behavior. To override it, please use pageContent instead of simplePageContent and
Responsiveness.

<ui:composition template="/layouts/BasicTemplate.xhtml">

<ui:define name="pageTitle">Sample Page</ui:define>

<ui:define name="simplePageContent">

This is sample content.

</ui:define>

</ui:composition>

Components

24

2. See the result after using Basic template for example:

Two column template

Two column template inherits Basic Template. It has 2 columns which user can customize their contents. Normally, the first
column is for navigation, the second for displaying corresponding content.

How to use Two column template

1. Create a HTML User Dialog, define template in ui:composition and insert content of second column and third
column using ui:define.

<ui:composition template="/layouts/TwoColumnTemplate.xhtml">

<ui:define name="pageTitle">Sample Page</ui:define>

<ui:define name="navigationRegion">

Navigation Region

</ui:define>

<ui:define name="contentRegion">

Content Region

</ui:define>

</ui:composition>

2. See the result after using Two column template for example:

Components

25

Task template

Task template is used for displaying task functionality and related information to support completing the task. There are a
lot of regions to be filled with your custom content:

• Request name

• Process chain

• Errors

• Information

• Dynamic tabs

• Request form

• Case information tab

• Buttons at footer

How to use template TaskTemplate.xhtml

1. Create a new HTML User Dialog and then use ui:composition to define template which you use inside.

<ui:composition template="/layouts/TaskTemplate.xhtml">

2. Set caseId value so that the Case information tab is available to users where they can see info of case,
documents, related tasks and history. It is mandatory.

<ui:param name="caseId" value="#{ivy.case.id}" />

Components

26

3. Set data to actualStepIndex and steps variables which are used for ProcessChain component in template. It is
mandatory.

<ui:param name="actualStepIndex" value="#{data.actualStepIndex}" />

<ui:param name="steps" value="#{data.steps}" />

Components

27

4. Inserts contents for taskName, errorsZone, infoZone. It is optional.

<ui:define name="taskName">...</ui:define>

<ui:define name="errorsZone">...</ui:define>

<ui:define name="infoZone">...</ui:define>

5. Inserts some new tabs, refers some segment of code as below. If your application has multiple tabs, use it and turn off
request form by set showTaskFormTab to false.

<ui:param name="showTaskFormTab" value="false" />

<ui:define name="dynamicTabs">

<p:tab title="My first tab">

<p:inputText id="first-name" value="#{data.firstname}"/>

</p:tab>

<p:tab title="My second tab">

<p:inputText id="last-name" value="#{data.lastname}"/>

</p:tab>

</ui:define>

6. Overwrite contents of default tab. Use it when your application need only 1 tab.

<ui:define name="taskForm">

<h:form>

<p:outputLabel name="myCustomLabel" />

...

</h:form>

</ui:define>

Components

28

7. Set visible/invisible for default tab case information. Set following variables as true if you want to visible and vice
versa.

<ui:param name="showCaseStatusInfoTab" value="true" />

8. Inserts left buttons and right buttons which stay at the bottom of the page. It is optional. You can use it to define your
action button. Consider using partialSubmit to submit your data im tabs.

<ui:define name="leftButtons">

<p:commandButton value="Save" actionListener="#{logic.save}"
partialSubmit="true" process="first-name last-name" update="first-name last-
name" />

</ui:define>

<ui:define name="rightButtons">

<p:commandButton value="Cancel" actionListener="#{logic.cancel}"
immediate="true" />

</ui:define>

Case template
Case template is similar to Task Template in both UI and usage. The difference is it is used for displaying case details
functionality.

Components

29

How to use case template

Create a new HTML User Dialog and then use ui:composition to define template which you use inside.

<ui:composition template="/layouts/CaseTemplate.xhtml">

Default homepage template

Default homepage template is used to create pages that have the look as default homepage of Portal. Besides, users can
customize it by disabling default widgets, add new widgets, change position of widgets. For more details including basic and
advanced customization, refer to Portal home

How to use default homepage template

Create a new HTML User Dialog and then use ui:composition to define template.

<ui:composition template="/layouts/DefaultHomePageTemplate.xhtml">

Task list template

Task list template is used to display task list where user can see tasks and their details.

Components

30

Components

31

How to use task list template

1. Create a new HTML User Dialog and then use ui:composition to define template.

<ui:composition template="/layouts/PortalTasksTemplate.xhtml">

</ui:composition>

2. Data class of this dialog should have an attribute named taskView with type
ch.ivy.addon.portal.generic.view.TaskView. By changing this attribute, user can modify title of the
task list widget, collected tasks (through dataModel) and more. The following is a sample to build a taskView.

import ch.ivy.addon.portalkit.datamodel.TaskLazyDataModel;

import ch.ivy.addon.portalkit.bo.MainMenuNode;

import ch.ivy.addon.portal.generic.view.TaskView;

TaskLazyDataModel dataModel = new TaskLazyDataModel();

dataModel.setIgnoreInvolvedUser(true);

dataModel.setSortType(ch.ivy.addon.portalkit.enums.SortType.BY_PRIORITY);

MainMenuNode category = new MainMenuNode();

category.value = "My Task List";

out.taskView = TaskView.create().dataModel(dataModel).pageTitle("My Task
List").hideTaskFilter(true).category(category).showHeaderToolbar(false).createNewTaskView();

Case list template

Case list template is used to display case list where user can see cases and their details.

Components

32

Components

33

How to use case list template

1. Create a new HTML User Dialog and then use ui:composition to define template.

<ui:composition template="/layouts/PortalCasesTemplate.xhtml">

</ui:composition>

2. Data class of this dialog should have an attribute named caseView with type
ch.ivy.addon.portal.generic.view.CaseView. By changing this attribute, user can modify title of the
case list widget, collected cases (through dataModel) and more. The following is an example to build a caseView.

import ch.ivy.addon.portalkit.datamodel.CaseLazyDataModel;

import ch.ivy.addon.portal.generic.view.CaseView;

CaseLazyDataModel dataModel = new CaseLazyDataModel();

out.caseView = CaseView.create().dataModel(dataModel).withTitle("My
Cases").buildNewView();

Handle required Login in templates
All templates require login to access by default. But templates also provide functionality to access page without login by
adding the isNotRequiredLogin parameter.

How to handle required login in template

1. Create a new HTML User Dialog and then use ui:param to define the template inside

<ui:composition template="/layouts/BasicTemplate.xhtml">

<ui:param name="isNotRequiredLogin" value="#{data.isNotRequiredLogin}" />

<ui:define name="pageContent">

This is sample content.

</ui:define>

</ui:composition>

2. Result after using template for example (All user settings and application menus will not visible).

Responsiveness
Since version 6.4, Portal officially supports responsiveness for 3 screen widths: iMac(width 1920), iPad landscape(width
1366) and iPad portrait(width 1024).

To apply your styles for the above resolutions, you can add your own media query css:

/* Small screen */ @media screen and (max-width: 1365px) {/*.....*/}

/* Medium screen */ @media screen and (min-width: 1366px) and (max-width: 1919px)
{/*.....*/},

/* Large screen */ @media screen and (min-width: 1920px) {/*......*/}

In Portal's new design, the main container's width should be changed according to menu state (expand/colapse).

Components

34

To adapt the change, you need to initialize the ResponsiveToolkit Javascript object and introduce 3 objects to handle
3 screen resolutions and each object has to implement the updateMainContainer method.
Portal templates define their own responsiveness, you can redefine the footer section to override:

E.g. Initialize ResponsiveToolkit for TaskList page.

<ui:define name="footer">

<script type="text/javascript">

$(function(){

var taskListLargeScreen = new TaskListLargeScreenHandler();

var taskListMediumScreen = new TaskListMediumScreenHandler();

var taskListSmallScreen = new TaskListSmallScreenHandler();

var responsiveToolkit = ResponsiveToolkit(taskListLargeScreen, taskListMediumScreen,
taskListSmallScreen);

Portal.init(responsiveToolkit);

});

</script>

</ui:define>

Components

35

Enable Portal chat

Chat feature

Components

36

Information
Chat feature was implemented on Portal.

There are couple of reason, it's intentionally disabled by default:

• Customers have their own Chat, they do not need another.

• For using Chat, system administrator has to configure it on their server (needs additional Libraries).

• With added libraries for using Chat, it slows AxonIvyEngine down.

• It has log-in issue as if AxonIvyEngine is configured with IIS (version 7.5 or older) to manage SSO.

• Not fully support UNICODE characters on Ivy 6.3 and upwards.

For users who want to use chat feature
Follow the steps below:

1. First, IvyEngine/Designer needs some configuration to use Chat. Copy two libraries and then paste into webapps/
ivy/WEB-INF/lib folder located on AxonIvyEngine, AxonIvyDesigner.

Note
You can find these libraries inside PortalKit module, located on PortalKit/lib_chat or download
from this site.

• portal-chat-endpoints-s125.jar

• atmosphere-runtime-2.4.2.jar

2. Second, Enables Chat on UI by setting enablesChat param

<ui:param name="enablesChat" value="true" />

Added this line to your pages that are using BasicTemplates of Portal (adds to
DefaultPortalHomeTemplate.xhtml, TaskTempate.xhtml, etc.)

E.g.:

<ui:composition template="/layouts/BasicTemplate.xhtml">

<ui:param name="enablesChat" value="true" />

<...>

</ui:composition>

Or simply change param's value on BasicTemplate.xhtml

<ui:param name="enablesChat" value="#{enablesChat}" /> to <ui:param name="enablesChat" value="true" />

3. Restarts AxonIvy Desinger/Engine. Then enjoy Chat.

Error handling
In this section, we introduce 2 kinds of errors, when and how to handle them in Portal.

• Ajax error : this kind of errors occur during a JSF ajax requests, for example when the user clicks on the show full mode
button to tell the task widget switches to full mode, without handling the end user would not get any form of feedback if
the action was successfully performed or not.

documents/PortalChat/portal-chat-endpoints-s125.jar
documents/PortalChat/atmosphere-runtime-2.4.2.jar

Components

37

• Non-ajax error : this kind of errors occur when user access to Portal from a url which could not be handled successfully
by server side, or being navigated by a corrupted url. For example, when the user clicks on a link to start a task which
does not exist.

Ajax error handling

Introduction

By default, Portal handles all exceptions from ajax requests.

When an exception occurs, Portal will show an error notification with the exception type and message to end user. The
exception details is available when user click on show details button.

Stacktrace on error messages can be showed/hid depend on ivy system property Errors.ShowDetailsToEndUser.

Note
This feature is only available if using the portal default template: BasicTemplate or its extension.

Components

38

Result

Non-ajax error handling

Introduction

By default, when the server has any error such as : HTTP 404, HTTP 500, or exception while page's loading, AxonIvyEngine
will show an default error page. E.g.:

Components

39

You can find content of this page is the file located on ${AxonIvyEngineFolder}/webapp/ivy/ivy-error-
page.xhtml, but the error page is not user friendly, too much technical information that normal user may not understand.
Thus, Axon Ivy Portal provides an alternative solution to make this page nicer.

How to configure

Download the zip file below to configure on your own engine (or designer).

Important
Read README.txt

PortalErrorPageConfiguration.zip

Result

HTTP 404 Page Not Found

Example testing URL: 404

documents/ErrorHandling/PortalErrorPageConfiguration.zip

Components

40

HTTP 500 Error

Example testing URL: 500

Additional Components

Process history

Introduction

This component is a lazy loading list which displays all business cases of a business entity in your application. You can
include this component everywhere:

In a page

In a dialog

Components

41

Components

42

How to use

First you need to link the cases to the business entity. Call the subprocess SetBusinessEntityId in the process which
need to be linked and input an identifier unique to your business entity. The subprocess will set the id to the additional property
"CASE_BUSINESS_ENTITY_PROPERTY" of the business case.

Include the process history component into your page:

<ic:ch.ivy.addon.portal.component.ProcessHistory businessEntityId="resourceA247" >

The value of the attribute businessEntityId must match the id input into the subprocess in the first step.

By default the component will load 20 cases at a time. You can change this by setting the attribute chunkSize to the number
you want . You should use this attribute alongside with the attribute scrollHeight to configure the scroll bar of the list.

Note
If you use this component in a dialog, you must run this script processHistory.setup(); when the
dialog is shown. For example:

<p:dialog widgetVar="process-history-dialog" id="process-history-dialog"
width="800" height="500" header="Process history of Resource A247"
onShow="processHistory.setup();">

<ic:ch.ivy.addon.portal.component.ProcessHistory
businessEntityId="resourceA247" chunkSize="6" scrollHeight="400" />

</p:dialog>

Components

43

Important
If your process has a Trigger component or sends a signal to start another process with the option "Attach to
Business Case that triggered this process" selected, the current case of the process will become a technical case
and will not be loaded into the process history list. In this case You need to call the SetBusinessEntityId
subprocess after the first Trigger or signal sending step.

Task Analysis

Introduction

Task Analysis component of Portal provides features for users to analyze not only tasks but also cases. These features are:

1. Set of filters for both tasks and cases which allow user to filter and to find tasks, cases more better. More, user can create
and manage their own filter set for future usage.

2. Dynamic result table with lots of information for both task and case.

3. Support export result as Excel files (currently we only support .xlsx extension).

Components

44

How to use

Task Analysis component is integrated into Statistic widget. You can use this component directly when open Statistic widget.
If you want to use this component, you only have to redirect to Task Analysis component with following code:

import javax.faces.context.FacesContext;

String taskAnalysisUrl = ivy.html.startref("Start Processes/TaskAnalysis/
start.ivp");

FacesContext.getCurrentInstance().getExternalContext().redirect(taskAnalysisUrl);

Components

45

Process Chain

Introduction

Process Chain component of Portal provides features for users to know status of all steps in a process: the step's working,
these steps are done, these steps is not done. These features are:

1. Support to display all working steps or display only helpful steps as begin, last, current, previous current, next current
steps.

2. Support to change the sharp of process chain: circle or line.

3. Support to change direction of process chain: horizontal or vertical.

How to use

Process Chain component can be integrated in any widget by including this component into a page. In order to use this
component in a page, include this component to this page with following code:

<ic:ch.ivy.addon.portalkit.singleapp.process.ProcessChain id="process-chain-circle-
horizontal"

componentId="component-circle-horizontal" shape="CIRCLE" direction="HORIZONTAL"

isShowAllSteps="FALSE" actualStepIndex="#{data.actualCurrentIndex}"
steps="#{data.steps}" />

1. Must to set value for actualStepIndex parameter. This is current step index.

Components

46

2. Must to set value for steps parameter. This is list of working steps.

3. Can change shape parameter to CIRCLE or LINE based on the requirement. Default value of this is CIRCLE.

4. Can change direction parameter to HORIZONTAL or VERTICAL based on the requirement. Default value of this
is HORIZONTAL.

5. Can change isShowAllSteps parameter to TRUE or FALSE based on the requirement. Default value of this is FALSE.

Change Last Drilldown Level Of Task By Expiry
Chart

Task by expiry chart

Components

47

For users who want to change last drilldown level of Task by
expiry chart

By default, the last drilldown level of a expiry chart is HOUR. It means that, to open a related tasks list of this chart, users
must navigate from YEAR -> MONTH -> WEEK -> DAY -> HOUR, clicking on a column of HOUR chart to open the tasks.

To change this last drilldown level, users can set the value of EXPIRY_CHART_LAST_DRILLDOWN_LEVEL in Global
settings.

For example, to navigate to task list immediately when clicking on a week column, set
EXPIRY_CHART_LAST_DRILLDOWN_LEVEL = WEEK:

48

Chapter 5. Customization

Build your own portal

Build your own portal using Portal kit

1. Create new project

Create a new project that depends on PortalTemplate.

Project structure

Customization

49

2. Create new home page

a. Create a new HTML Dialog for your home page and then use ui:composition to define template which you
use inside. If you want to keep the look of default homepage, then choose DefaultHomePageTemplate.

Tip
Find more information about templates at Layout templates.

Important
Portal uses some template files in the folder "webContent/layouts" in Portal Template project.
Do not create files with the same path and name in your project as they can override the Portal files.

b. Create a new Start process and connect to User Dialog for your home page.

c. Run your application, start your newly created process and see result.

Customization

50

Tip
Your new homepage is the default portal homepage. You can customize it. Reference at Portal home.

3. Set category for tasks

To categorize tasks, set values for Category field. Task category can be multi-level if it is separated by slash / signs,
as below.

Customization

51

4. How to use feature warning on closing browser/tab

Sometimes when users are working on a task, if they close tab, browser or refresh page then they may lose their current
work. It's a good idea to ask users to verify that they truly want to proceed with the action they just invoke. To use this
feature, add WarnOnClosingBrowserTab component to the page you want to be affected.

<ic:ch.ivy.addon.portalkit.feature.WarnOnClosingBrowserTab confirmMessage="You
may lose your work in progress. Do you want to continue?" />

Customization

52

Depending on browser, content of confirmMessage and names of buttons may vary.

Tip

Normally, when using this component, actions that user invoked outside Portal area like closing tab/
browser, refreshing page, clicking on a link on bookmark bar of browser will cause browser to display a
confirmation dialog. That might cause the feature work incorrectly.

Actions that lead to navigation that user invoke inside Portal area like clicking on a link/button, submitting
a form will not display any confirmation popup.

In some cases, user might use javascript to navigate to another page, for example: set value for
window.location.href or call location.reload().

If that happens, add this to your javascript function: showConfirmDialogBeforeUnload =
false;

PortalStyle customization (logos, colors, date
patterns)

Change Portal's logos
You can change logo and login logo by modifying default logo in PortalStyle project.

• Modify cms entry PortalStyle/images/logo/CorporateLogo.png to update homepage logo.

• Modify cms entry PortalStyle/images/logo/loginLogo.png to update login logo.

• Override the variables: @login-logo-height, @home-logo-height in customization.less to scale your logos.

Change Portal styles
Portal applies LESS framework to support you in customizing the styles of Portal. There are 4 files: theme.less (shouldn't
be modified), variables.less (shouldn't be modified), font-faces.less , customization.less , they are
placed at PortalStyle/webContent/resources/less .

• font-faces.less : replace the default font url-s by your font url-s and add/change other font styles to customize the
Portal's font styles.

http://lesscss.org

Customization

53

• customization.less : to change the styles of Portal deeply. E.g. Portal's component styles.

Note
Portal provides several variables (@body-background-color , @menu-color , @sidebar-
dimension-transition-duration , @sidebar-opacity-transition-duration ,
@process-chain-menu-color , etc.) to change Portal's style. To override the variables, you should put
overriding code (e.g. @body-background-color: red) at customization.less file.

• @body-background-color : it is the background color of Portal.

• @menu-color : it is the color of the application menu, the color of texts and icons on the menu will be
calculated based on the brightness of the menu color.

• @sidebar-opacity-transition-duration : it is the opacity transition duration of the text on
application menu.

• @process-chain-menu-color : it is the color of Process Chain component.

• @action-button-color : it is the color of action button in Portal e.g: close, add, next ...

• @action-button-border-radius : it sets shape of action button, it's rectangle when set @action-
button-border-radius:0px;

• @sidebar-dimension-transition-duration : it is the expanding/collapsing transition
duration of the application menu.

Important

• Do not change font-family property values.

• Limitation: the task priority color customization hasn't changed the task priority colors in statistic.

There is additional button type allows developer to configure its color and shape. Use it when you need different button types
in your own project. How to: use style class context-button for it. For example : <p:commandButton value="My
button" styleClass="context-button" > There are 2 variables allow developers to change color and shape

• @context-button-color : it is the color of context button

• @context-button-border-radius : it sets shape of action button, it's rectangle when set @context-button-border-
radius:0px;

After you finish your customization, compile these above less files to build the css file named theme.min.css and put it at
PortalStyle/webContent/resources/css . You are highly recommended to run the mvn lesscss:compile
maven command in PortalStyle to do it quickly.

Change date time pattern

You can change date pattern by modifying CMS in PortalStyle project: PortalStyle/patterns/datePattern and
PortalStyle/patterns/dateTimePattern .

Customization

54

Login

Login page

To replace default login page, extends existing templates with ui:define name="login" to define your new login
component like below

<ui:composition template="/layouts/BasicTemplate.xhtml">

<ui:define name="login">

<ic:internaltest.ui.YourOwnLoginComponent />

</ui:define>

</ui:composition>

Menu

Introduction

By default Portal main menu has 4 items: Processes, Tasks, Cases and Statistics. You can remove these items or add your
own items.

Customization

55

Customization

Create a callable sub process in your project with the loadSubMenuItems() signature, make sure this signature is unique
in your application and follow the hints.

Customization

56

Portal home

Before beginning

This guide assumes that you are already familiar with CSS to integrate your own widgets.

Introduction

The default home page of Portal has three built-in widgets in order: Process widget, Task widget, Statistic
widget. If it does not fit your needs, you can replace it by your own one. We decided that based on screen size, widget
may become hidden, not smaller.

Customization

57

Basic usage
Following these steps to have your own Portal Home:

1. Create a new home page which uses the DefaultHomePageTemplate.xhtml template. By doing this, your new
home page will inherit the widgets from the default home page and has a place holder for your own widgets.

Your custom home page should look like below:

<ui:composition template="/layouts/DefaultHomePageTemplate.xhtml" ... >

<ui:define name="customWidget">

...

Customization

58

</ui:define>

</ui:composition>

2. In case of single Portal: Create a new process start for the new home page. Now you will use this process start as the
entry point of your portal instead of the default one. To let portal know about your new portal home, you have to go
to the portal settings and set the portal home url to the new one. e.g: HOMEPAGE_URL=http://localhost:8081/
ivy/pro/designer/CustomizePortalHome/157454FCA39C3844/start.ivp

In case of multi Portal: refer to Setup multi portals to setup.

Note
Currently, responsive custom home page is not supported.

Advanced usage
The DefaultHomePageTemplate.xhtml template supports some customizations.

Display/hide the default widgets

The template has three parameters: displayProcessWidget, displayTaskWidget,
displayStatisticWidget to display or hide the default widgets. Their default values are true, you can set them to
boolean values (true/false) to display or hide them as you need.

<ui:composition template="/layouts/DefaultHomePageTemplate.xhtml" ... >

<ui:param name="displayTaskWidget" value="false" />

</ui:composition>

Tip
Task widget now is hidden.

Customize the default widget's sections

The template has the placeholders to redefine the default widgets' sections.

Customization

59

<ui:composition template="/layouts/DefaultHomePageTemplate.xhtml" ... >

<ui:define name="statisticWidget">

<div class="js-dashboard-main-content-3rd-col dashboard-main-content-3rd-col
layout-col">

<h:panelGroup layout="block" styleClass="js-statistic-widget" id="statistic-widget-
container">

<!-- KEEP THE STATISTIC WIDGET -->

<ic:ch.ivy.addon.portalkit.component.StatisticWidget id="statistics-widget"
compactMode="true" tasks="#{tasks}" ... >

<!-- ADD THE WEATHER WIDGET BELOW STATISTIC WIDGET -->

<ic:my.namespace.WeatherWidget />

</h:panelGroup>

</div>

</ui:define>

</ui:composition>

Add your own widgets

The template has a placeholder to add your own widgets. Your own widgets' default positions are next to statistic widget, you
can change them by setting the default widgets' positions.

<ui:composition template="/layouts/DefaultHomePageTemplate.xhtml" ... >

<ui:define name="customWidget">

<ic:my.namespace.ComponentName ... />

</ui:define>

</ui:composition>

Tip
This custom widget will show below the 3 default widget

Change the page's title

The default page title is Cockpit. Apply the following code to change it:

<ui:composition template="/layouts/DefaultHomePageTemplate.xhtml" ... >

<ui:define name="pageTitle">YOUR PAGE'S TITLE</ui:define>

</ui:composition>

Task widget
TaskWidget is a built-in component of Portal which contains the tasks users can interact with. In order to show needed task's
information, Portal supports overriding concept for TaskWidget. Each TaskWidget contains 2 parts:

Customization

60

1. UI: TaskHeader and TaskListHeader and TaskBody and TaskFilter

2. Data query: display the tasks as you want

Important

1. Task header customization does not support responsive design, smaller resolutions (iPad, etc.)

2. Additional properties cannot be displayed right now as a column

3. Task header's buttons cannot be modified (they stay where they are)

How to override task widget's UI

Refer to PortalExamples project for examples

1. Introduce an Axon.ivy project which has PortalTemplate as a required library.

2. To customize task widget, you must customize Portal Home first. Refer to Customize Portal home to set new home page.

3. Copy the PortalStart process from PortalTemplate to your project. Point PortalHome element to your custom
home page in previous step. This process is new home page and administrator should register this link by Portal's Admin
Settings.

4. Override Task widget in: TaskList page, Task Search result, Relate tasks of a case, History tasks of a case.

• Introduce a new HTMLDialog which uses template /layouts/PortalTasksTemplate.xhtml (refer to
Responsiveness to override responsiveness). You can take a look at PortalTasks.xhtml to see how to customize
it.

Tip

Highly recommend to copy the PortalTasks HTMLDialog in PortalTemplate and change the copied
one's view.

• Use Axon.ivy Override to override the OpenPortalTasks callable. The original implementation of this callable
is calling PortalTasks, change it to call the customized Page introduced in the step above. The signature of this
callable is useView(TaskView) and customized page must receive this TaskView instance, put in the dialog's
Data with the exact name taskView.

5. After previous steps, you can override TaskHeader and TaskListHeader and TaskBody and TaskFilter

Task header

Refer to the taskListHeader and taskHeader sections in PortalTasks.xhtml of PortalTemplate. In case your
task widget has new columns, you should override TaskLazyDataModel to make the sort function of these columns work:

• Introduce a java class extends TaskLazyDataModel

• Override the extendSort method, the extendSortTasksInNotDisplayedTaskMap method and extend the sort
function for the added columns (see the methods' Javadoc comments)

• Default taskList supports user to config display/hide column

Customization

61

• In case you has new columns, override method getDefaultColumns of the extended class from TaskLazyDataModel
to display checkboxes in Config columns panel and display/hide sortFields (see the methods' Javadoc comments)

• To add cms for checkboxes's label, add new entries to folder /ch.ivy.addon.portalkit.ui.jsf/taskList/
defaultColumns/ in PortalStyle or override method getColumnLabel(see the methods' Javadoc comments)

• In taskListHeader section, use TaskColumnHeader component

• In taskHeader section, use TaskCustomField component for each additional columns. This component will
handle display/hide new columns on task list.

Currently, TaskCustomField only supports text field. If you want to create your own component, remember to add
rendered="#{taskView.dataModel.isSelectedColumn('YOUR_CUSTOM_COLUMN')}"

For example: Show custom field customer name which stored in task.customVarCharField5

<ic:ch.ivy.addon.portalkit.component.task.column.TaskCustomField id="customer-
name-component" componentId="customer-name" column="customVarCharField5"
dataModel="#{taskView.dataModel}" labelValue="#{task.customVarCharField5}" />

• Use Axon.ivy Override to override the InitializeTaskDataModel callable and initialize data model by your
customized one.

Customization

62

• In your customized portal tasks HTMLDialog, the customized data model should be passed as a parameter to components
(refer to PortalTasks.xhtml).

Task body

Refer to the taskBody section in PortalTasks.xhtml of PortalTemplate.

If you need to apply the responsiveness behavior of Portal for task details, there are 2 components which can be used:
ResponsivenessHandleContainer and ResponsivenessHandleButton:

• ResponsivenessHandleContainer: a container contains ResponsivenessHandleButton and your javascript which
contains the onstart and oncomplete function of ResponsivenessHandleButton.

• ResponsivenessHandleButton: contains the params which handle responsiveness:

• icon: the icon of button

• displayedSelectors: css selectors of the components which need to be displayed.

• hiddenSelectorsInLargeScreen: css selectors of the components which need to be hidden in large screen (width: 1920).

• hiddenSelectorsInMediumScreen: css selectors of the components which need to be hidden in medium screen (width:
1366).

• hiddenSelectorsInSmallScreen: css selectors of the components which need to be hidden in small screen (width: 1024).

• fadeTime: the fade in/out time.

• onstart: client side callback to execute before responsiveness execution.

• oncomplete: client side callback to execute after responsiveness execution.

For example:

<ui:composition template="/layouts/PortalTasksTemplate.xhtml">

<ui:param name="useOverrideBody" value="true" />

<ui:define name="taskBody">

Customized content

<ic:ch.ivy.addon.portalkit.component.ResponsivenessHandleContainer
styleClass="hidden-lg">

<ic:ch.ivy.addon.portalkit.component.ResponsivenessHandleButton icon="fa fa-
file js-note-column-responsive-button" displayedSelectors="['#task-
note']" hiddenSelectorsInMediumScreen="['.task-details .replaced']"
hiddenSelectorsInSmallScreen="['.task-details .replaced']" />

<h:outputScript library="js" name="task-detail-default-responsiveness.js" />

</ic:ch.ivy.addon.portalkit.component.ResponsivenessHandleContainer>

</ui:define>

</ui:composition>

Customization

63

Task filter

• Refer to the taskFilter section in PortalTasks.xhtml of PortalTemplate.

• In order to introduce new filter, create a new java class extends TaskFilter and override its methods (see javadoc comments)

Customization

64

• Introduce a java class extends TaskFilterContainer. This filter container contains your filters, you can reuse default filters,
refer to DefaultTaskFilterContainer.java

Customization

65

Tip

StateFilter is added as default to container. If you don't need it, use this code in constructor:
filters.remove(stateFilter);

• Introduce a java class extends TaskLazyDataModel. Override the initFilterContainer method and initialize filter
container (see javadoc comments)

• Use Axon.ivy Override to override the InitializeTaskDataModel callable and initialize data model by your
customized one.

• In your customized portal tasks HTMLDialog, the customized data model and filter container should be passed as
parameters to components (refer to PortalTasks.xhtml).

• Advanced usage: Portal supports storing/restoring filters. Your filter class (extends TaskFilter) is stored in business
data. Properties stored user input values should be persisted, properties controlled logic should not be persisted to reduce
persisted data size in business data. Use annotation @JsonIgnore to exclude properties. By default, Portal takes care
storing/restoring filters. If you want to customize storing/restoring filter data, do it in your data model class (extends
TaskLazyDataModel class).

By default, filters are stored/restored in process model level. You can change this by setting the ui:param filterGroupId
in PortalTasks.xhtml to a new Long value.

Tip

If you have multiple case lists in your project, you may want to set filterGroupId to an unique identifier
for each of your PortalTasks.xhtml across your projects

How to override task widget's data query
• Override the BuildTaskJsonQuery callable process of PortalKit and build your own query to effect the data of task

widget, task categories and statistic widget.

• If you want to apply a query for only Home page task list, not for Full mode task list, use attribute isQueryForHomePage
in BuildTaskJsonQuery callable process to specify the query for Home page task list, e.g.

if (in.isQueryForHomePage) { // in home page
 in.jsonQuery = TaskQuery.create().where().activatorUserId().isNotNull().asJson();
}

• Apply the following steps in case you would like to provide data for task list after navigating to task list from your page,
e.g. clicking on a bar chart then opening the tasks of that bar:

• Use the OpenPortalTasks callable process with the TaskView parameter. It is used to define which information
are displayed in TaskWidget.

• Refer to TaskView, TaskSearchCriteria, TaskQueryCriteria to build your TaskView

TaskLazyDataModel dataModel = new TaskLazyDataModel();
dataModel.getQueryCriteria().setTaskQuery(YOUR_TASK_QUERY); // Set your TaskQuery
dataModel.getSearchCriteria().setInvolvedUsername(true); // Use this code line if you would like to display the tasks for all users
out.taskView = TaskView.create().dataModel(dataModel).showHeaderToolbar(false).createNewTaskView();

Custom task delegate
Portal allows to customize the list of users and roles that a task can be delegated to. This can be done following these steps:

Customization

66

1. Introduce a Axon.ivy project which has PortalTemplate as a required library and its own PortalStart process.
Refer to step 1, 2, 3, 4 in override task widget's UI guide.

2. In your project, override the callable subprocess CalculateTaskDelegate

3. The callable subprocess data contains the current user in.currentUser and the current task to be delegated
in.task. The lists in.users and in.roles contain all possible users and roles that the task can be delegated to.
Modify those two to have your own delegate list.

Case widget
CaseWidget is a built-in component of Portal which contains the cases which users can interact with. In order to show needed
case's information, Portal supports overriding concept for CaseWidget. Each CaseWidget contains 2 parts:

1. UI : CaseListHeader, CaseHeader, CaseBody and CaseFilter

2. Data query : display the cases as you want by modifying data query

Important

1. Case header customization does not support responsive design, smaller resolutions (iPad, etc.)

2. Additional properties cannot be displayed right now as a column

3. Case header's buttons cannot be modified (they stay where they are)

How to override case widget's UI
Refer to PortalExamples project for examples

1. Introduce an Axon.ivy project which has PortalTemplate as a required library.

2. To customize case widget, you must customize Portal Home first. Refer to Customize Portal home to set new home page.

3. Copy the PortalStart process from PortalTemplate to your project. Point PortalHome element to your custom
home page in previous step. This process is new home page and administrator should register this link by Portal's Admin
Settings.

Customization

67

4. Override Case widget in: CaseList page, Case Search result.

• Introduce a new HTMLDialog which uses template /layouts/PortalCasesTemplate.xhtml (refer to
Responsiveness to override responsiveness). You can take a look at PortalCases.xhtml to see how to customize
it.

Tip

Highly recommend to copy the PortalCases HTMLDialog in PortalTemplate and change the copied
one's view.

• Use Axon.ivy Override to override the OpenPortalCases callable. The original implementation of this callable
is calling PortalCases, change it to call the customized Page introduced in the step above. The signature of this
callable is useView(CaseView) and customized page must receive this CaseView instance, put in the dialog's
Data with the exact name caseView.

5. After previous steps, you can override CaseHeader and CaseListHeader and CaseBody and CaseFilter

Case List Header and Case Header

Refer to the caseListHeader and caseHeader sections in PortalCases.xhtml of PortalTemplate. In case your
case widget has new columns, you should override CaseLazyDataModel to make the sort function of these columns work:

• Introduce a java class extends CaseLazyDataModel

• Override the extendSort method, the extendSortCasesInNotDisplayedCaseMap method and extend the sort
function for the added columns (see the methods' Javadoc comments)

• Default caseList supports user to config display/hide column

Customization

68

• In case you have new columns, override method getDefaultColumns of the extended class from
CaseLazyDataModel to display checkboxes in Config columns panel and display/hide sortFields (see the methods'
Javadoc comments)

• To add cms for checkboxes's label, add new entries to folder /ch.ivy.addon.portalkit.ui.jsf/caseList/
defaultColumns/ in PortalStyle or override method getColumnLabel(see the methods' Javadoc comments)

• In caseListHeader section, use CaseColumnHeader component

• In caseHeader section, use CaseCustomField component for each additional column. This component will handle
display/hide new columns on case list.

Currently, CaseCustomField only supports text field. If you want to create your own component, remember to add
rendered="#{caseView.dataModel.isSelectedColumn('YOUR_CUSTOM_COLUMN')}"

For example: Show custom field customer name which stored in case.customVarCharField1

<ic:ch.ivy.addon.portalkit.component.cases.column.CaseCustomField id="case-
customer-name-component" panelGroupId="customVarCharField1-column-case-
header-panel" componentId="customVarCharField1-column-case-header-text"

Customization

69

column="customVarCharField1" dataModel="#{caseView.dataModel}"
labelValue="#{case.customVarCharField1}" />

• Use Axon.ivy Override to override the InitializeCaseDataModel callable and initialize data model by your
customized one.

• In your customized portal cases HTMLDialog, the customized data model should be passed as a parameter to components
(refer to PortalCases.xhtml).

Case body

Refer to the caseBody section in PortalCases.xhtml of PortalTemplate.

If you need to apply the responsiveness behavior of Portal for case details, there are 2 components which can be used:
ResponsivenessHandleContainer and ResponsivenessHandleButton:

• ResponsivenessHandleContainer: a container contains ResponsivenessHandleButton and your javascript which
contains the onstart and oncomplete function of ResponsivenessHandleButton.

• ResponsivenessHandleButton: contains the params which handle responsiveness:

• icon: the icon of button

• displayedSelectors: css selectors of the components which need to be displayed.

• hiddenSelectorsInLargeScreen: css selectors of the components which need to be hidden in large screen (width: 1920px).

• hiddenSelectorsInMediumScreen: css selectors of the components which need to be displayed in medium screen (width:
1366px).

• hiddenSelectorsInSmallScreen: css selectors of the components which need to be displayed in small screen (width:
1024px).

• fadeTime: the fade in/out time. (metric: millisecond)

• onstart: client side callback to execute before responsiveness execution.

• oncomplete: client side callback to execute after responsiveness execution.

Customization

70

Case filter

• Refer to the caseFilter section in PortalCases.xhtml of PortalTemplate.

• In order to introduce new filter, create a new java class extends CaseFilter and override its methods (see javadoc comments)

Customization

71

• Introduce a java class extends CaseFilterContainer. This filter container contains your filters, you can reuse default filters,
refer to DefaultCaseFilterContainer.java

Tip

StateFilter is added as default to container. If you don't need it, use this code in constructor:
filters.remove(stateFilter);

• Introduce a java class extends CaseLazyDataModel. Override the initFilterContainer method and initialize filter
container (see javadoc comments)

• Use Axon.ivy Override to override the InitializeCaseDataModel callable and initialize data model by your
customized one.

• In your customized portal cases HTMLDialog, the customized data model and filter container should be passed as
parameters to components (refer to PortalCases.xhtml).

Customization

72

• Portal supports storing/restoring filters. Your filter class (extends CaseFilter) is stored in business data. Properties
stored user input values should be persisted, properties controlled logic should not be persisted to reduce persisted data size
in business data. Use annotation @JsonIgnore to exclude properties. By default, Portal takes care storing/restoring filters.
If you want to customize storing/restoring filter data, do it in your data model class (extends CaseLazyDataModel class).

• By default, filters are stored/restored in process model level. You can change this by setting the ui:param filterGroupId
in PortalCases.xhtml to a new Long value.

Tip

If you have multiple case lists in your project, you may want to set filterGroupId to an unique identifier
for each of your PortalCases.xhtml across your projects

How to override case widget's data query

Override the BuildCaseJsonQuery callable process of PortalKit and build your own query to effect the data of case
widget.

Apply the following steps in case you would like to provide data for case list after navigating to case list from your page:

• Use the OpenPortalCases callable process with the CaseView parameter. It is used to define which information are
displayed in CaseWidget.

• Refer to CaseView, CaseSearchCriteria, CaseQueryCriteria to build your CaseView

CaseLazyDataModel dataModel = new CaseLazyDataModel();
dataModel.getQueryCriteria().setCaseQuery(YOUR_CASE_QUERY); // Set your CaseQuery
dataModel.getSearchCriteria().setInvolvedUsername(true); // Use this code line if you would like to display the cases for all users
out.caseView = CaseView.create().dataModel(dataModel).withTitle("My Cases").buildNewView();

Default user process

Introduction

In Portal homepage, the Process widget displays default processes, you can customize them so that project important
starts are displayed.

Customization

Create an override which overrides sub process createDefaultUserProcess() in Portal Kit. This sub process return
a list of user processes. Follow instruction to create default processes.

Customization

73

Customization

74

Tip
We provide the method to generate link from UserFriendlyRequestPath in ProcessStartCollector class:
findStartableLinkByUserFriendlyRequestPath(String requestPath). This method will
return startable link if user has permission to start the process, otherwise return emtpy string.

Default chart

Introduction
In Portal homepage, by default there is no chart. But you can create your default chart.

Customization
Create an override which overrides sub process DefaultChart in Portal Kit. This sub process return a list of default charts.
Follow instruction to create charts.

Customization

75

Change password process

Introduction

In Portal, the Change password process helps users to change their current password, you can customize this process
to add more handling when user change password.

Customization

76

Customization

Create a callable sub process in your project with the changePassword(String,String) signature, make sure this
signature is unique in your application. It must return an enums ChangePasswordStatus and the message showing to
user (you can override this process in PortalKit):

Customization

77

Customization

78

Logout process
1. Introduce an Axon.ivy project which has PortalTemplate as a required library.

2. Copy the PortalStart process from PortalTemplate to your project. This process is new home page and
administrator should register this link by global

3. Refer to Customize Portal home to set new home page.

4. Override the Logout process to customize the logout behavior.

5. Create a callable sub process in your project with the getLogoutPage() signature to customize the page which will
be redirect to after logout, default is Portal home page. Make sure this signature is unique in your application.

Customization

79

Express end page

Introduction

When the last task of Axon Express finish, express end page will be displayed. You can customize this by provide your own
page.

Customization

1. Create a new UI and start link of the new end page.

2. Create a callable sub process in your project with the handleEndPage() signature, make sure this signature is unique
in your application. It must return start link of new end page you define in step 1.

Customization

80

Navigate back
• When a task finish, Portal will navigate back to previous page. For example if a task is started from homepage, then go

back to homepage. In case task is started from task list, then go back to task list after finish.

• Developer can also apply this feature to their own button e.g Cancel a task.

• Just call PortalNavigator.navigateToPortalEndPage() in your button function

Customization

81

Hide technical stuffs

Hide technical roles
A technical role is the role which is not displayed anywhere (e.g. delegate, absence management).
AXONIVY_PORTAL_ADMIN is a technical role by default.

To mark a role as a technical role, set the HIDE property with any value to the role.

Tip

Use the utility method of Portal to set property:

ch.ivy.addon.portalkit.util.RoleUtils.setProperty([YOUR_ROLE], ch.ivy.addon.portalkit.util.HIDE,
[ANY_VALUE])

Hide technical tasks
A technical task is the task which is not displayed in any task lists of Portal.

To mark a task as a technical task, set the HIDE additional property with any value to the task.

Tip

Use the utility methods of Portal:

• Set property: ch.ivy.addon.portalkit.util.TaskUtils.setHidePropertyToHideInPortal(ITask)

• Remove property: ch.ivy.addon.portalkit.util.TaskUtils.removeHidePropertyToDisplayInPortal(ITask)

Hide technical cases
A technical case is the case which is not displayed in any case lists of Portal.

Tasks belong to the technical case is considered as technical tasks and should be hide as well.

To mark a case as a technical case, set the HIDE additional property with any value to the case.

Customization

82

Tip

Use the utility methods of Portal:

• Set property: ch.ivy.addon.portalkit.util.CaseUtils.setHidePropertyToHideInPortal(ICase)

• Remove property: ch.ivy.addon.portalkit.util.CaseUtils.removeHidePropertyToDisplayInPortal(ICase)

Additional case details page

Introduction

The additional case details page shows all custom fields of a case by clicking on "Show details" link in case details.

You can customize this page for each case by providing a relative URL to case.

Customization

1. Create a new additional case details UI and a start process which will display the new UI.

2. Store the URL of start process in "CUSTOMIZATION_ADDITIONAL_CASE_DETAILS_PAGE" additional property
of case. You could use SetAdditonalCaseDetailPage.mod callable process, and input the friendly URL of
process as parameter.

Customization

83

Tip
If you want to redirect user to external link, simply store that external link to
"CUSTOMIZATION_ADDITIONAL_CASE_DETAILS_PAGE" additional property of case.

Customization

84

Global Search Result

Global Search Result

Follow these steps to customize the global search page:

1. Introduce an Axon.ivy project which has PortalTemplate as a required library.

2. Copy the PortalStart process from PortalTemplate to your project. This process is new home page and
administrator should register this link by global

3. Refer to Customize Portal home to set new home page.

4. Create the customized search data model extends SearchResultsDataModel, and override the search method
to filter your objects.

Tip

Note: it is recommended that lazy loading or pagination should be applied for custom tabs to have a good
performance.

5. Create the HTML dialog using /layouts/SearchResultsTemplate.xhtml, recommended to copy the
SearchResults HTML dialog in PortalTemplate. In dataclass, change the dataModel to the above one, and in
logic, also cast it.

Customization

85

6. Define the custom-search section to add your customized tabs:

7. Override the OpenPortalSearch callable process and change the HTML dialog to your customized one.

Tip

Hint: refer to the example in the PortalExamples project: CustomizedSearchResultsDataModel.java,
CustomizedSearchResults HTML dialog, OpenPortalSearchOverride callable process

86

Chapter 6. Settings
User Settings provide options for configuring Portal applications:

• Admin settings

• Absence and substitute settings

• Email settings

• Language settings

Admin settings
User needs to have role AXONIVY_PORTAL_ADMIN to see this menu item, it is used to configure Portal configuration, see
different Portal configurations in General concept

Global settings

Global settings for Portal can be set in Settings tab. All available settings with their default value and description are listed
in this place.

Settings

87

You can edit value for a specific setting

Settings

88

You can also get back the default value for each setting by clicking reset button on each row, or reset all values of all settings
by clicking Restore All To Defaults button

Setup multi portals

Warning
Multi applications on multi engines is not officially supported, only an experimental mode is available.

Important

There is 2 ways to configure portals: two levels and single level

• Two levels portal

• Used for related applications where we need an overview of all tasks and cases.

• There is default application Portal.

Settings

89

• Create new applications: App1, App2, App3... Deploy portal (kit, template ..) to new applications.

• Configure multi-apps Portal on single server: login by Portal Admin. Configure 1 server then configure
applications: App1, App2, App3...

• Note that, do not add default Portal application, the default application (Dashboard) is reserved for
displaying all tasks/cases... from all configured applications.

• Dashboard menu only visible when login user exists in Portal application.

• Single level portal

• Used for independent applications.

• Disable the default application Portal.

• Create new applications: App1, App2, App3... Deploy portal(kit, template ..) to new applications.

• Configure multi-apps Portal on single server: login by Portal Admin. Configure 1 server then configure
applications: App1, App2, App3...

1. Add a new server

a. Open Admin Settings by selecting the item in UserMenu on the topbar, if your page using layout of
PortalTemplate .

Settings

90

Important
If your application does not use templates of PortalTemplate project, you have to create a page
and use AdminSettings component inside.

Tip
To be able to open Admin Settings dialog, user needs to have role AXONIVY_PORTAL_ADMIN .

b. Click on New button to add new server.

Note

• Server path must be the link of the PortalConnector application (e.g. http://
localhost:8080/ivy/ws/System/PortalConnector). Note that the port in the link
is the web server port

• Web services authentication of the built-in PortalConnector of the Axon.ivy engine are configured
as HTTP Basic . Therefore, when adding a new server using the built-in PortalConnector, use
authentication type HTTP Basic .

• The username, password are used by PortalKit to invoke the web services of PortalConnector.

These are accounts of the application that deploys PortalConnector.

The built-in PortalConnector are deployed to application System therefore use the username/
password of system administrators (account to login to administration tool) when
connecting to built-in PortalConnector.

https://developer.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#configuration-webserver
https://developer.axonivy.com/doc/latest/EngineGuideHtml/administration.html

Settings

91

To create system administrators, refer to the document EngineGuide > chapter
Configuration > Engine Configuration > System Administrators . E.g.
in the latest EngineGuide, refer to this guideline .

Tip

• In multi-Portal mode, Portal uses the External Host value as host value for task or process starts
URLs. If this value is empty, Portal will use the host value as configured in the server path field.
For other mode, Portal will use the host value of the web address of the engine for the URLs.

• External Host value is returned from configured server's system property
WebServer.ExternalHostName (you might want to change it via Engine's AdminUI).

You can sync this value by clicking Test Connection button, if
WebServer.ExternalHostName is set the value would be updated, otherwise displays
AUTO_DETECT .

Configured server information is needed for calling service to get this value.

2. Add a new application

Choose Application tab on Admin Settings dialog and click on New button to add new application. Here you
can choose application type either as Ivy application or Third Party application.

http://developer.axonivy.com/doc/latest/EngineGuideHtml/configuration.html#d5e1756

Settings

92

Tip

• Application name is the name of the application when you create it. Display name is the name
of the application to be shown on Portal UI.

• If Active is not checked, the application will be disabled on the application menu. To prevent its tasks,
cases and processes to be shown, you must leave the Visible box unchecked.

• Portal link specifies the link you will be redirect to when selecting the application on the application
menu. It could be an absolute link (e.g. http://10.123.1.30:8000/ivy/pro/.../PortalStart.ivp) or relative
link (e.g. /ivy/pro/.../PortalStart.ivp). If your application could be accessed from multiple domains, use
relative link so that you can access the link from different domains.

• Absence planning if checked will enable absence feature for the application.

• Mail notification If checked will enable email setting feature for the application.

Settings

93

• For multiple languages of application display name, you need to create the "AppInfo/
SupportedLanguages" CMS which defines how many languages your application supports. See the below
"Language settings" for more details.

3. Synchronize data

After adding new settings (server, application), click on Synchronize Settings to synch new settings and
information about users to registered servers. Close dialog (logging out may be required) and check if newly created
application is available on left menu.

Tip
In single mode, Portal detects the applications that have the login user in the current engine. Based on
that, Portal will collect tasks, cases of those applications. In multi-portal mode, Portal will only collect on
registered applications.

By default, Portal will automatically synchronize user settings to registered servers at 5AM everyday. This
synchronization process is needed to run at only one application for each server. If there are multiple applications
registered for one server, the first application in alphabetical order will run the synchronization process. You can

Settings

94

change the time when the synchronization start by going to AdminUI and change the value of the global variable
PortalStartTimeSynchUserExpression of the application that will run the synchronization process.

Absence and substitute settings
• Choose Absences from User Settings options.

• To create new Absence, click New Absence to open the dialog as below:

Settings

95

Settings

96

• till/from date must not be empty.

• till date must be greater than or equal from .

• till date must not be in the past (greater than or equal today).

• User can edit or delete Absences by click edit/delete on the Absences list.

• Deputies area will display all the information of deputy on each application.

Settings

97

Settings

98

• User cannot set deputies for hidden roles.

• All the items will be saved after click Save button.

Email settings
• To configure mails of Portal applications, select Email Settings in User Settings .

• You can configure one email setting for all applications or each application separately.

• There are 2 types of emails notification: Ivy email notification sent when task is assigned (More information about the
email notification can be found here) and other emails sent from processes of customer project.

• All the items will be saved when click save button.

http://developer.axonivy.com/doc/latest/EngineGuideHtml/administration.html#administration.emailnotification

Settings

99

Language settings
• To configure languages of Portal applications, select Language Settings in User Settings .

• UI reads current languages settings for all applications.

• To change language for application, select one in the languages dropdown list of application. When the change is saved,
the language will be set for application (Click on the application in header menu to reload application and see the change
of language).

Settings

100

• For multiple languages, the CMS key /AppInfo/SupportedLanguages must exist in your application. From Portal
7.1, this CMS entry is moved to Portal Style. It contains list of all languages supported by your application, separated by
comma.

• Must not contain spaces

• Same as display name of Locale

Settings

101

• Separated by comma

• Process model version, which has this CMS, must active

• To add new language to Portal, what you have to do is

• Add new language locale to cms entry of Portal Style /AppInfo/SupportedLanguages

• Export all CMS entries of Portal Style to excel file

• Add translation of new language for all CMS entries

• Import file excel back, then redeploy Portal Style

• This is sample how to add new Spanish to portal

Settings

102

103

Chapter 7. Troubleshooting
Here you will find solutions to some of the most common problems related to Axon.ivy Portal.

If you can't find your solution here there are some other sources which could help:

• Axon.ivy Q&A

The Axon.ivy Q&A contains a considerable amount of questions and answers related to Axon.ivy Designer and Engine.

• Stack Overflow

Problems related to common technologies like Java, JSF, Primefaces are answered on the web, e.g. on Stack Overflow.

• Support

You can get support via support@soreco.ch (support may be subject to charging, depending on your licence agreement).

IE Security Problem
If you start Portal in Internet Explorer installed on Windows Server then Portal application may not work correctly. The reason
could be Internet Explorer Enhanced Security Configuration is enabled by default which means ActiveX Controls and
scripting are disabled, so Internet sites may not display in Internet Explorer as you expect.

To fix this, you may turn off Internet Explorer Enhanced Security Configuration if you are running in Windows Server.
Another way is adding that site to the Trusted sites zone in Internet Explorer.

Portal install with IIS
It could be a problem when install portal with IIS with proxy, depends on your environment. Consider to configure if your
IIS is called via proxy. Add -Dhttp.proxyHost to VM argument could help.

http://answers.axonivy.com/
http://www.stackoverflow.com/

	Axon.ivy 7.2
	Table of Contents
	Chapter 1. Introduction
	Main features
	Reference architecture

	Chapter 2. Installation
	Release installation
	Installation
	Release Installation

	Basic installation
	Project modules
	Server configuration
	Add required libraries
	Specify servers, applications used in Portal
	General concept
	Automatically detect servers, applications
	Manually configure servers, applications

	Default user credentials
	Role configuration
	Permission settings
	Absences
	Substitute
	Personal task permission
	Personal case permission
	Upload/delete document permission
	Express Workflow permission
	Statistics permission
	Administrator permission can see all tasks/cases in the application
	Administrator permission can interact with all workflows in the application

	Global variables
	Look and feel

	Migration notes
	How to migrate
	In designer
	In engine

	Migrate 7.1.0 to 7.2.0
	Migrate 7.0.3 to 7.0.5 (or 7.1.0)
	Migrate 7.0.2 to 7.0.3
	Migrate 7.0.1 to 7.0.2
	Migrate 7.0.0 to 7.0.1
	Migrate 6.x to 7.0.0
	SQL conversion

	Migrate 6.4 or 6.5 to 6.6
	Migrate 6.4 to 6.5
	Migrate 6.x (x < 4) to 6.4 (Jakobshorn)
	Portal appearance

	Migrate 5.0 (Rothorn) to 6.0 (Säntis)
	Database conversion
	Portal appearance

	Release notes
	Changes in 7.2
	Changes in 7.1
	Changes in 7.0 (Jakobshorn)
	Changes in 6.6 (Jakobshorn)
	Changes in 6.0 (Säntis)

	Chapter 3. Architecture
	
	Portal kit
	Portal style
	Portal template
	Self service BPM
	Axon.ivy Express
	Portal connector

	Chapter 4. Components
	Widget concept
	Before beginning
	Introduction
	How it is
	Main technology and concept
	Services
	Built-in widgets
	Predefined styles
	Flow
	Integration
	Exception handling

	Layout templates
	Templates for development
	Basic template
	How to use Basic template

	Two column template
	How to use Two column template

	Task template
	How to use template TaskTemplate.xhtml

	Case template
	How to use case template

	Default homepage template
	How to use default homepage template

	Task list template
	How to use task list template

	Case list template
	How to use case list template

	Handle required Login in templates
	How to handle required login in template

	Responsiveness

	Enable Portal chat
	Chat feature
	Information
	For users who want to use chat feature

	Error handling
	Ajax error handling
	Introduction
	Result

	Non-ajax error handling
	Introduction
	How to configure
	Result

	Additional Components
	Process history
	Introduction
	How to use

	Task Analysis
	Introduction
	How to use

	Process Chain
	Introduction
	How to use

	Change Last Drilldown Level Of Task By Expiry Chart
	Task by expiry chart
	For users who want to change last drilldown level of Task by expiry chart

	Chapter 5. Customization
	Build your own portal
	Build your own portal using Portal kit

	PortalStyle customization (logos, colors, date patterns)
	Change Portal's logos
	Change Portal styles
	Change date time pattern

	Login
	Login page

	Menu
	Introduction
	Customization

	Portal home
	Before beginning
	Introduction
	Basic usage
	Advanced usage
	Display/hide the default widgets
	Customize the default widget's sections
	Add your own widgets
	Change the page's title

	Task widget
	How to override task widget's UI
	Task header
	Task body
	Task filter

	How to override task widget's data query
	Custom task delegate

	Case widget
	How to override case widget's UI
	Case List Header and Case Header
	Case body
	Case filter

	How to override case widget's data query

	Default user process
	Introduction
	Customization

	Default chart
	Introduction
	Customization

	Change password process
	Introduction
	Customization

	Logout process
	Express end page
	Introduction
	Customization

	Navigate back
	

	Hide technical stuffs
	Hide technical roles
	Hide technical tasks
	Hide technical cases

	Additional case details page
	Introduction
	Customization

	Global Search Result
	Global Search Result

	Chapter 6. Settings
	
	Admin settings
	Global settings
	Setup multi portals

	Absence and substitute settings
	Email settings
	Language settings

	Chapter 7. Troubleshooting
	
	IE Security Problem
	Portal install with IIS

