
Axon.ivy 7.1

Designer Guide

Axon.ivy 7.1: Designer Guide

Publication date 13.04.2018
Copyright © 2008-2018 AXON IVY AG

iii

1. Introduction .. 1
What is Axon.ivy .. 1
About this guide ... 2
Axon.ivy Workbench ... 2
Perspectives ... 4
Most important menu entries .. 4
Most important toolbar items .. 7
Useful Commands (Shortcuts) ... 9
Axon.ivy Preferences (Workspace Preferences) .. 9
Common UI Components ... 18

2. Process Modeling .. 25
Projects .. 25
Process Modeling .. 41
Simulating process models .. 60
Case Maps ... 73
Process Elements Reference .. 78

3. Data Modeling .. 168
Data Classes ... 168
Business Data Store ... 172
Persistence .. 176

4. IvyScript .. 190
Introduction .. 190
IvyScript Language .. 190
IvyScript Editor ... 192
Browsers .. 194
Public API ... 197
IvyScript Reference ... 197
IvyScript-Java Integration ... 202

5. CMS .. 205
Content Management System ... 205
CMS Access ... 206
CMS Manipulation .. 207
CMS Translation ... 216

6. User Interface .. 218
User Dialogs ... 218
Web Page ... 319

7. 3rd Party Integration .. 338
Introduction .. 338
Java Interface .. 338
Database .. 338
Web Services .. 338
REST Services .. 339

8. Configuration .. 340
Configuration Management ... 340
Database Configuration ... 355
REST Clients Configuration .. 357
Web Service Clients Editor ... 360
Roles and Users .. 364
Configuration files ... 368

9. Concepts .. 370
Adaptive Case Management .. 370
Workflow ... 378
Offline Tasks .. 384
Data Storage ... 386
Overrides ... 388
Error Handling .. 394
Rule Engine .. 399
Extensions .. 401

Axon.ivy 7.1

iv

Deployment .. 409
Continuous Integration ... 414
Miscellaneous ... 415

10. Troubleshooting ... 425
Introduction .. 425
Error Dialogs .. 425
Startup Problems ... 425
Memory Problems ... 426
Graphics Problems ... 426
OS X Problems ... 426
Logging ... 427

11. References .. 429
Conventions used in this book ... 429
Reference ... 430
Glossary ... 435

1

Chapter 1. Introduction
What is Axon.ivy

Axon.ivy is a Digital Business Platform that simplifies and automates the interaction of humans with their digital systems.
The platform typically is in charge in the most precious business cases where companies produces value. Here is how we do it:

1. Visualize: Our platform allows you to document business processes fast and intuitive. A shared view on users, roles,
departments and technical systems that are involved in a business process improves your work. HR recruitment profiles
become clearer, bottle necks become obvious, ideas for effective improvements arise by anyone who is involved in the
process.

2. Automate: Documented processes are good. But what you really want is to drive your highly valuable processes
automatically. Often the daily work of employees that are involved is distracted into searching and filtering data from
various tools and feed these data into other technical systems. Even tough value is produced in a well-known business
case, there is a lack of a clear interface which guides the involved users through the process. Highly valuable data is often
divided and stored in various dedicated technical systems. With Axon.ivy you can drive your process automatically.
People, data and technical systems can easily be orchestrated by our platform. An initial application that leads users
through the process can be generated without the need to hire a software engineer. People can contribute to the process
by using their favourite device such as a smartphone or workstation.

3. Improve: The digitalization of your company can evolve over time, we favour small predictable improvements over
big bang solutions. The Axon.ivy Digital Business Platform allows you to start simple and fast with your existing
environment. You may just start by task notifications that are sent to users that should contribute to a running process.
And eventually the Platform becomes your single interface for all your business interactions. You will be able to measure
KPIs based on the highly valuable data that is produced during the execution of your business processes. Based on
these insights, you can advance your business constantly and effective. The cost of business transformations become
reasonable and predictable.

The Axon.ivy Digital Business Platform consists of:

• The Axon.ivy Designer - where you draw, simulate and implement automated business processes.

• The Axon.ivy Engine - an application server that executes your business cases and provides a shared interface to process
users.

Why Axon.ivy?
Axon.ivy is exciting for everyone that partakes on your digital transformation journey.

• Business: we enable you to start your personal digital transformation journey and make new business opportunities possible.
You are still the captain of your ship, start with simple automations and transform essential parts of your business when
you gain trust and confidence.

• Business Analysts: it has never been easier to document processes fast and intuitive. The process simulation allows you to
verify that you have a shared view how processes should be executed. Setup a simple structure for the data of a processes
and you even get a simple executable application with generated front ends that are meaningful. No software engineer is
required to create an already powerful application from scratch.

• Developers: develop your application on a rich stack of Java frameworks that stood the test of time. We minimize your
technology evaluation effort by giving you a set of libraries and an IDE that match perfectly together. This allows you to
quickly jump into projects and deliver value. While you always have the ability to break out of our predefined tooling and
use advanced features of Tomcat, JPA, JSF, JAX-RS or whatever you require.

• Operations: we deliver packages for popular Platforms (Linux, Windows). No big change, we orchestrate your existing
systems. We support many DB vendors (Oracle, Microsoft SQL Server, MySQL, PostgreSQL). Effective monitoring and
logging interfaces are provided to give you a safety that the application is healthy and accessible.

Introduction

2

About this guide
You are now reading Axon.ivy Designer documentation. In case you want to know more on

• Getting the latest Axon.ivy version: Go to http://developer.axonivy.com/download/

• System requirements: Please read Readme.html in the installation directory

• Working with Axon.ivy Designer: Start with the Quick Start Tutorial (see next section)

• Demo projects: The Axon.ivy Designer ships with several demo projects, which can be imported.

• Axon.ivy Engine administration: Please read the Engine Guide (in the installation folder of an Axon.ivy Engine)

• Upgrading an existing installation: Please read MigrationNotes.html (located in the installation folder).

All above mentioned documentations are brief and tend to describe only necessary functionality. We highly encourage reading
these documentations to speed up your development, to get to know new features or to eliminate potential problems.

Tip

Do not forget, anytime you find some unknown feature, hitting F1 will show you a context sensitive compact
help!

Axon.ivy Workbench
Axon.ivy is based on the Eclipse platform. So when you start Axon.ivy Designer you launch an Eclipse workbench.

The first thing you see after starting Axon.ivy Designer is a dialog that allows you to select the location of the workspace.
The workspace is the root directory where your work will be stored.

After the workspace location is chosen, the Workbench window is displayed. Initially, at the first start the Welcome Screen is
displayed. On this screen different links to tutorials and documents are displayed. New users should click on the Quick Start
Tutorial to learn how to use Axon.ivy Designer.

You can get the Welcome Screen back at any time by selecting Help > Welcome.

http://developer.axonivy.com/download/

Introduction

3

Figure 1.1. Axon.ivy Workbench Overview

Axon.ivy Editors and Views

Editors and views are visual components in the workbench. They are the tools to work with.

A view is typically used to display properties for an active editor or to navigate through a hierarchy of information.
Modifications made in a view are saved immediately.

An editor is used to edit a certain type of a resource like a process model diagram or a dialog panel. Modifications made in an
editor follow the open-save-close life cycle model. Multiple instances of an editor can be open within a workbench window.

The name of the resource that is shown in the editor appears in the editor's tab label. If an asterisk (*) appears at the left side of
the label this indicates that the editor has unsaved changes. When an attempt is made to close the editor or exit the Workbench
with unsaved changes a prompt to save the editor's changes will appear.

Double clicking the tab of an editor or view will expand the part to full size of the workbench window. Double click the tab
of an expanded part again to toggle back to default size and location.

See the section Axon.ivy Views for a summary of the ivy specific views.

In the section Axon.ivy Editors you find a summary of the ivy editors.

Introduction

4

Perspectives
A perspective defines a set and layout of views and editors in the workbench window. The current perspective is displayed
on the title bar of the window and it is highlighted at the upper right corner in the shortcut bar. You can open and switch to a
specific perspective using the Window menu or the buttons in the shortcut bar at the upper right corner.

You can change the perspectives as you like. Editors and views can be rearranged in a perspective by just moving them around.
It's also possible to close views or display additional ones (via Window -> Show View). Furthermore there is a functionality
to reset a perspective to its default definition (via Window -> Reset Perspective).

Figure 1.2. Switch between Perspectives

Perspectives provided by Axon.ivy

Axon.ivy provides following perspectives:

• Process Model: Create and edit business process diagrams.

• Process Development: Simulate and debug processes or design Html Dialogs .

• Rich Dialog: Design Rich Dialogs.

Other Perspectives

There are further perspectives provided by the Eclipse platform that you may use for specific development tasks:

• Resources: Explore and manipulate resources of the project at file system level.

• Team Synchronization: Browse through the changes between your local working copy and the base revision on the
Subversion server.

• Java: Edit Java source files.

Warning

Work carefully with these perspectives, since you might get direct access to Axon.ivy resource files that lets
corrupt their content.

Most important menu entries
The main window of Axon.ivy contains multiple menus. This section explains the most important menus and menu items
for Axon.ivy users.

Note

The availability and enablement of many menu items is dependent on the current selection and the currently
active editor. They may therefore slightly vary and not exactly correspond to the screenshots below.

Introduction

5

File menu

1 - New ... This menu item opens a sub menu with all available new wizards to create new resources
for editing. Some of the shown wizards are contributed by the Eclipse system and are
not Axon.ivy specific.

To create new Axon.ivy resources it is recommended to use the menu entry Axon.ivy >
New... or to use the context menu in the Axon.ivy project tree...

2 - Switch Workspace... Allows you to switch to a different workspace. A workspace is a directory that contains
a collection of projects that are related to each other in some way.

In the opening dialog simply select a different workspace directory. If you've switched
workspaces before, you can also chose from a list of previously used workspaces.

3 - Import... Use this menu to import General > Existing Projects into Workspace or to import Other
> Checkout Projects from SVN.

Existing projects (that can be located anywhere on your machine, also in a different
workspace) can be chosen to be imported by reference only or by copying the whole
project.

Warning

There are currently some unsolved problems importing multiple projects
from SVN directly. Please import projects one by one, or check out projects
from a file explorer first, and then import them into your workspace.

4 - Export... This menu can be used to export projects or parts of projects from the current workspace.
Use General > Archive File or General > File System.

Search menu

Introduction

6

1 - Search... Opens the Search dialog. Where search tabs allows you to search for instance Axon.ivy artifacts
or File contents.

2 - File... Same as Search... but opens directly on the File tab of the Search dialog, where search queries
for any text within any resource of the current project or even in the whole workspace can
be started.

3 - Axon.ivy Search Same as Search... but opens directly on the Axon.ivy Search tab of the Search dialog, where a
search for Processes, CMS Objects, Data Classes or Rich Dialogs can be started.

Project menu

1 - Clean... Deletes all temporary and generated files (such as compiled Java class files, compiled
Data class files, etc.) from your project or workspace and rebuilds them.

This may help to resolve building problems.

2 - Build Automatically Enables / disables automatic building (i.e. compiling) of project resources such as
Java classes (also for Rich Dialogs) or Data classes. This means that all the necessary
resources are automatically built and updated if changes are made in a project.

Warning

You should never turn this option off! It may lead to seemingly erroneous
behavior of Axon.ivy (chances are that most things don't work anymore
as expected until the option is turned on again or until you build the
workspace / projects manually again).

Axon.ivy menu

1 - New ... This menu item opens a sub menu with all available new wizards to create new Axon.ivy specific
resources (such as User Dialogs or Data classes or Axon.ivy projects).

2 - Engine Menu Offers the operations Start Engine And Show Start Page, Start Engine, Stop Engine, Engine Speed
and Enable/Disable Animation.

See also Toolbar section.

3 - Preferences Opens the Preferences editor for the Axon.ivy specific preferences only.

See also Preferences section.

Introduction

7

Window menu

1 - Open Perspective Opens a sub menu with the available perspectives. Non-standard perspectives can be selected
from the sub menu Other....

2 - Show View Opens a sub menu with the available views for the current perspective. Non-standard views
can be selected from the sub menu Other.... The complete set of Axon.ivy specific views is
available below the Axon.ivy folder.

3 - Preferences... Opens the Preferences editor for the all settings that are available on the Eclipse platform. The
Axon.ivy specific preferences are available under the Axon.ivy branch of the preferences tree.

For convenience use the menu Axon.ivy > Preferences... to open the preference editor for the
Axon.ivy specific settings only.

See also Preferences section.

Help menu

1 - Welcome Opens the welcome screen as shown on the first start of Axon.ivy after installation.

2 - Help Contents Opens the Help browser. Select Axon.ivy Designer Guide to access this documentation
here. Many other help documents that may be relevant for Axon.ivy users are also
available (e.g. Workbench User Guide for an introduction to the Eclipse workbench or
ULC Visual Editor Help for a general introduction to the Visual Editor).

3 - About Axon.ivy Designer Shows system information about the used Axon.ivy Designer application (e.g. version
and build number). This might be helpful when seeking support.

Most important toolbar items
The main window of Axon.ivy shows a toolbar with various buttons which is situated right below the menu bar of the
application. This section explains the most important actions for Axon.ivy users that can be found on the toolbar.

Introduction

8

Note

The number and activity state of the buttons that are shown in the toolbar depend on the current selection and
the currently active editor. They may therefore slightly vary and not exactly correspond to the screenshot below.

- New Wizard Selector This button opens a drop down list with all available new wizards to create new
resources for editing. Some of the shown wizards are contributed by the Eclipse system
and are not Axon.ivy specific.

To create new Axon.ivy resources it is recommended to use the menu entry Axon.ivy
> New... or to use the context menu in the Axon.ivy project tree...

- Save
Saves the contents of the currently active editor.

- Pause / Restart Visual Editor
Only available if a Rich Dialog Visual Editor is active. Pauses / restarts the Visual
Editor. This may help to restore a consistent state if for some reason, the visual editor
has lost it's internal model (i.e. visual parts are not rendered correctly).

Pause / restart is usually faster than closing and reopening of the editor. When the Visual
Editor is paused the contents of a panel can no longer be edited until it is restarted again.

Tip

In case you think your Visual Editor somehow does not work as expected,
close all Visual Editor instances, and clear its cache using Axon.ivy >
Debug > Clear Visual Editor Cache

- Start Process Engine And
Show Start Page

Starts the process engine, switches to the Process Development Perspective and
displays the start page.

- Start Process Engine Starts the process engine (start page is shown only if browser view is already opened).

- Stop Process Engine
Stops the process engine and terminates all currently running processes (including User
Dialogs).

- Set Animation Speed
Configure the animation speed for process simulation. Other animation settings you
find in Engine/Simulation Settings

- Enable / Disable Animation
Globally enables / disables animation during process simulation. Other animation
settings you find in Engine/Simulation Settings

- Insert Rich Dialog
Only available if a Rich Dialog Visual Editor is active. Opens a dialog for Rich Dialog
selection and inserts the selected Rich Dialog as an embedded widget if mouse is
clicked on the panel of the currently active Visual Editor.

- Select Content and Formatting
Language

See Content and Formatting Language Dialog for more details.

- Search Opens the Search dialog. Allows you to search for any text within any resource of the
current project or even in the whole workspace (use the File Search tab of the dialog).

- Goto Previous Modification Goes back to the editor and location where the last modification was made (if available).

Introduction

9

- Goto Next Modification Goes to the editor and location where the next modification was made (if available).

- Open Perspective
Opens a drop-down list with perspectives to select for opening. Non-standard
perspectives can be chosen from the Other... menu entry.

Useful Commands (Shortcuts)
This section explains important global available commands and their shortcuts.

Open Ivy Process Ctrl+Shift+P Opens a dialog which allows you to browse for a Process to open in an editor.

Open Ivy User Dialog
Ctrl+Shift+D

Opens a dialog which allows you to browse for a User Dialog to open in an editor.

Open Type Ctrl+Shift+T Opens a dialog which allows you to browse for a java type to open in an editor.

Open Resource Ctrl+Shift+R Opens a dialog which allows you to browse for a resource file to open in an editor.

Navigate Back Alt+Left Navigates to the previous resource that was viewed in an editor. Analogous to the back
button on a web browser.

Navigate Forward Alt+Right Navigates to undo the effect of the previous back command. Analogous to the forward
button on a web browser.

We recommend that you learn and use shortcuts as much as possible because you work more efficiently when you switch
between keyboard and mouse as less as possible. You can find more useful shortcuts here: https://shortcutworld.com/en/
Eclipse/win/all.

Axon.ivy Preferences (Workspace Preferences)
In the preferences, you can configure some settings of Axon.ivy Designer to adapt to your personal working style. Open the
Preferences.

Note

Most of these settings (and some more settings) you can overwrite in the properties of project

Deprecation Settings

Some features are deprecated but still supported. These settings allows you to enable deprecated features.

https://shortcutworld.com/en/Eclipse/win/all
https://shortcutworld.com/en/Eclipse/win/all
javascript:liveAction('ch.ivyteam.ivy.designer.help', 'ch.ivyteam.ivy.designer.activehelp.ActiveHelpOpenPreferences','')
javascript:liveAction('ch.ivyteam.ivy.designer.help', 'ch.ivyteam.ivy.designer.activehelp.ActiveHelpOpenPreferences','')

Introduction

10

Figure 1.3. The Deprecation preferences

Show deprecated case tags
inscription

If you enable this checkbox the sub-tab Tags in the tab Case on inscription masks will
be available again.

Show deprecated task kind
inscription

If you enable this checkbox the Task kind input fields on inscription masks will be
available again.

Show deprecated case business
information inscription

If you enable this checkbox the sub-tab Business information in the tab Case on
inscription masks will be available again.

Show deprecated task business
information inscription

If you enable this checkbox the sub-tab Business information in the tab Task and Tasks
on inscription masks will be available again.

Allow to define multi language
configurations

If you enable this checkbox some Configurations can be made language dependent.

Drag and Drop Settings

Drag and Drop (DnD) is one way to define data binding between instances of Ivy Data Classes and widgets members in Rich
Dialogs and to define event mappings between ULC widget events and RD Logic Event Steps.

Introduction

11

Figure 1.4. The Drag and Drop preferences

Open the Drag and Drop preference page

Open Popup Delay Specify how many seconds that the DnD drop dialog should wait until it shows.

Close Popup Delay Specify how many seconds that the DnD drop dialog should stay open until it closes.

Email Settings

These settings define the configuration for the Email Process Element on the designer.

Note

On the Engine you need to specifically set the EMail.Server.* system properties in the Engine
Administration Tool. Therefore you can choose different configurations for the designer and testing purposes
than in your production environment

javascript:executeCommand('org.eclipse.ui.window.preferences(preferencePageId=ch.ivyteam.ivy.designer.preferences.DnDPreferencePage)')

Introduction

12

Figure 1.5. The Email preferences

SMTP host name The name of your outgoing email server (the SMTP server). Please refer to your system
administrator to get this name.

Use default SMTP port If selected the default SMTP port depending on the encryption method is used.

SMTP port The port your SMTP server is listening. Please refer to your system administrator to
get the correct port.

SMTP user name A valid user name for your outgoing email server to authenticate on it (if this feature
is used). Please refer to your system administrator to get this name.

SMTP password The password for the given user name above. Please refer to your system administrator
to get this name.

Test email address (from) In the designer, this email address overwrites the sender setting in the inscription mask
of the Email Step. Mails are not sent to the address that is configured in the inscription
mask but to this address. Therefore you can test the functioning of your processes
without sending email's to the real addresses (which perhaps are only intended for
production messages).

Test email address (to) The same principle as above but for the recipient.

Encryption method The encryption method used for the communication with your mail server.

Use SSL client key Only select this option if the SMTP server requires a client certificate to authenticate
the client. The key (certificate) will be read from a key store. See section SSL Client
Settings for more information.

SSL client key alias The name (alias) of the key to send to the SMTP server. If empty the first key found
in the key store is used.

Send Test Email Sends a test mail with the current settings. With the default preferences you should
instantly see the sent mail in the 'Email Messages' view which is provided by the
developer SMTP.

Introduction

13

Note

All email settings are also available as project-specific settings.

Developer SMTP

During process development mails generated by the Axon.ivy Digital Business Platform are preferably not sent to a real SMTP
server. Normally you just need to quickly inspect the contents of theses generated mails. A real remote SMTP will increase
the round-trip to read these message. Therefore the Designer comes pre-configured with a simple SMTP mail server.

With the default E-Mail preferences every mail will be sent to the development SMTP. You can inspect the mail inbox by
opening the view 'Email Messages'.

IvyScript Settings
With this preferences you can choose the default inscription on the action table and the visibility level of the completer.

Figure 1.6. The IvyScript preferences

Default Inscription on action table Before the action table (or any other output code) are executed on an element, the input
process data is copied from the out object is assigned from the out object. Use this
combo box to specify the copy behavior. The default behavior is to copy by reference
(i.e. the out variable will point to the same object as the in variable).

Default IvyScript visibility level The default visibility level of the IvyScript completer and the function browser can be
configured here.

Introduction

14

Process Editor Settings

The process editor settings are used to configure the behavior and look of the process editor as well as some settings that
are related to the use of processes.

Figure 1.7. The Process Editor preferences

Default element style The style for newly added process elements.

Background color Specify the background color of the process editor area.

Gridline color Specify the color of the grid lines in the process editor.

Show grid lines in the editor Specify whether the grid lines in the process editor are shown.

Note

The process editor settings are also available as project-specific settings.

Process Engine Settings

Here you can set whether the internal Browser view of Eclipse or an external Browser is used to show the Process Start
Overview and you can configure all the settings related to the animation.

Introduction

15

Figure 1.8. The Process Engine preferences

Automatically start all process
engines on Designer start

If the check box is selected, all process engines are automatically started on Designer
start. It can be disabled to prevent performance issues on large workspaces.

Use an external browser If the check box is selected, the system Browser is used to display the Process Start
Overview otherwise the internal Browser view of Eclipse will be used.

Animation speed fast < - > slow Sets the default speed of the animation. Setting the slider to a low value lets you observe
the process flow easily as the animation speed is decreased.

Tip

As the animation is very slow with low slider values adjust this setting
only when you need to debug a process in its lowest details and increase
the speed as soon you have finished.

Simulation/Animation follow Here you can set in which mode the execution is animated. You can choose between
the following values:

• Do not follow the animation at all - does nothing

• Show and open all touched processes (default) - Default setting, this opens a process
editor window for every process (or User Dialog logic in case of inner User Dialogs)
that is used within the started process

• Follow only top level business processes - Simulates and opens only top level
business processes. Does not enter User Dialogs, embedded subs or callable subs.

• Do not enter dialog logic - Does not simulate User Dialogs

• Follow only in open editors - You can choose which process are animated by opening
them in a process editor window. Note that the focus switches always the window
displaying the currently executed process

Introduction

16

• Follow only in current editor on top - If you are only interested to debug one specific
process. Note, that this is not imperatively the top-level process

History Here you can configure how many process data snapshots are histories in the process
engine history (See also History View).

• Activate history - If ticked process data is histories, if not ticked no process data is
histories.

• Number of requests to keep in history (0 means all) - Here you can configure the
number of requests per process element for which snapshots of the process data are
stored in the history. If you configure 0 the process data snapshots for all requests
are stored in the history.

• Number of executions to keep in history (0 means all) - Here you can configure the
number of executions per requests and process element for which snapshots of the
process data are stored in the history. If you configure 0 the process data snapshots
for all executions are stored in the history. A value of 10 means that the process data
snapshots of the five oldest and youngest executions of a process element per request
are stored in the history.

Note

In case of memory shortage during simulation the settings of history
preferences may be ignored (resulting in less snapshots shown in the
history).

Event Bean Simulation Switch off the simulation of Process Start or Intermediate Event Beans when you do
to focus on simulations of other elements (Event Bean simulation may pop up process
editors with the corresponding process and may overflow the Runtime Log View. In
order to apply changes, the Engine must be restarted.

• Execute Start Event Beans in Simulation - If ticked, the Process Start Event Beans
are executed, otherwise not.

• Execute Intermediate Event Beans in Simulation - If ticked, the Intermediate Start
Event Beans are executed, otherwise not.

Note

All engine settings are also available as project-specific settings.

SSL Client Settings
These settings define the key and trust stores to be used for SSL/TLS client connections.

Note

On the Axon.ivy Engine you need to specifically set the SSL.Client.* system properties in the Engine
Administration Tool. As a result you can choose different configurations for the designer and testing purposes
than in your production environment.

A key store is used to read client keys (certificates). This is only required if a server requests a client certificate in order to
authenticate the client.

A trust store is used to specify trusted server certificates or certificates of certification authorities. An SSL client autenticates
a server by using the certificates in a trust store. If the server provides a certificate that is signed by a certification authority
known by Java then the system trust store can be used. If the server uses a certificate that is self signed or signed by a unknown

Introduction

17

certification authority then a custom trust store can be used. The custom trust store must contain the server certificate or the
certificate of the unknown certification authority.

Key and trust stores can be created and modified (generation and import of certificates and keys) with a graphical keytool
like the KeyStore Explorer or by the keytool included in the Java Development Kit (JDK). More information can be found
in the documentation of the JDK.

Figure 1.9. The SSL Client preferences

Key Store Settings Use custom key store If selected the key store configured below is used to
read the client's key. A client key is only necessary
if the server requests SSL client authentication. If not
selected the system keystore is used. The system keystore
can be configured by setting the Java system property
javax.net.ssl.keyStore.

Key store file The file containing the client keys.

Key store password Password used to read the key store file.

Key password Password needed to decrypt the key. If empty the key store
password is used instead.

Key store type The type of the key store (e.g. JKS or PKCS12). If empty
the system default type is used.

Key store provider The security provider used to read the key store. If empty
the system default provider is used.

Key store algorithm The algorithm used to read the key store. If empty the system
default algorithm is used.

http://keystore-explorer.org/
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Introduction

18

Trust Store Settings Use custom trust store If selected the trust store configured below is used
to read trusted server certificates and/or certificates of
certification authorities. It is possible to use both the
system and custom trust store.

Trust store file The file containing the trusted server certificates and/or
certificates of certification authorities. Press Add... to add
a certificate from a file to the trust store.

Trust store password Password used to read the trust store file.

Trust store type The type of the trust store (e.g. JKS or PKCS12). If empty
the system default type is used.

Trust store provider The security provider used to read the trust store. If empty
the system default provider is used.

Trust store algorithm The algorithm used to read the trust store. If emtpy the
system default algorithm is used.

Use system trust store If selected the system default trust store is
used. It is possible to use both the system and
custom trust store. The system trust store can
be configured by setting the Java system property
javax.net.ssl.trustStore. If this property is
not set then the file jre/lib/security/jssecacerts is used as
trust store. If this file is also not available the file jre/lib/
security/cacerts is used.

Trust manager class The full qualified class name of a trust manager class that
is used to validate server certificates. This setting is only
considered if neither a custom nor a system trust store is
used.

Other SSL Settings Enable insecure SSL and HTTPS
connections

Manipulates the JVMs default SSLSocketFactory, so
that untrusted (self signed or outdated) certificates are
silently accepted. This could for instance be useful to
generate a Webservice stub from an insecure WSDL
location.

Test custom Keystore/Truststore Tests if the specified Keystore/Truststore can be
opened and read with the given configuration.

Note

The SSL Client trust- and key store settings are currently only considered when sending mails, for REST client
calls, CXF Web Service client calls and when loading web service definition (WSDL) files.

Common UI Components
Axon.ivy uses some UI components that are widely used in the UI panels of the product. This chapter introduces these
components.

IvyScript Editor
IvyScript Editors are enhanced text fields or text areas where IvyScript code can be entered. For more information about
IvyScript please read the chapter IvyScript. IvyScript Editors have a yellow background to help you identify them visually.
On the right side some buttons are visible. These buttons are called Smart Buttons. If you click on them different Dialogs
appear which provide context information that you may want to insert into the editor.

Introduction

19

Figure 1.10. IvyScript Editor

An ivyScript Editor will validate the code you enter into it. If the entered code is not valid the editor will change it's background
color to red. The invalid part of the entered text will be underlined with a red line. The tool tip of the editor will show a
message with a description of the problem.

Figure 1.11. IvyScript Editor with a validation problem

An IvyScript Editor has a completer that shows context relevant information in a popup window while you are typing into the
editor. You can select any of the proposals to be inserted into the editor. If you don't want to select a proposal simply continue
typing. The provided information will be filtered by your input. The popup window will disappear if none proposal exists for
the current input. You can enforce the appearance of the popup window by pressing CTRL+SPACE. Pressing CTRL+SPACE
on a open completer popup window will cycle the visibility level. The visibility level controls how much information is
displayed in the completer popup window. Pressing ALT+h will switch the help text of the selected information on and off.
Pressing ESC will close the completer popup window.

Figure 1.12. IvyScript Editor with completer Popup Window

Macro Text Editor
Like IvyScript Editors, Macro Text Editors are enhanced text fields or text areas with Smart Buttons. Macro Text Editors
have a blue background to identify them visually. They are used to specify texts. Inside the texts IvyScript Macros can be
used. IvyScript Macros start with <%= and end with %>. Between these two tags any IvyScript code can be written. IvyScript
Macros are place holders which are replaced with the evaluated value of the ivyScript Macro before the text is used.

Figure 1.13. Macro Text Editor

Smart Buttons
Smart Buttons are small buttons associated with other UI components. A Smart Button opens a dialog that shows context
sensitive information which can be inserted into or used to configure the associated UI component. The following table shows
the various Smart Buttons and explains their function.

Smart Button Description

Opens an Attribute or and Attribute and Method Browser
that shows the current process data structure and the methods
that are available on the process data entries. Use this Smart
Button if you want to insert process data into the associated UI
component. More information about the Attribute and Method

Introduction

20

Smart Button Description

Browser can be found in the chapter Attribute and Method
Browser

Opens a Function Browser that shows the structure of the
currently available ivy environment variable and the methods
that they provide. Moreover it shows all available global
functions. Use this Smart Button if you want to insert the ivy
environment variable or a global function. More information
about the Function Browser can be found in chapter Function
Browser.

Opens a Data Type Browser that shows all available process
data classes and Java classes. Use this Smart Button if you
want to insert a process data or Java class into the associated
UI component. Import statements for the selected class will
be created on the fly. More information about the Data Type
Browser can be found in the chapter Data Type Browser

Opens the New Bean Class Wizard. Use this Smart Button if
you want to create and configure a new Java bean class.

Opens a Java editor with the class configured in the associated
UI component. Use this Smart Button if you want to edit the
configured Java class.

Opens a Content Browser that shows all available content
objects. Use this Smart Button if you want to insert the content
or a reference to a content object into the associated UI
component. More information about the Content Browser can
be found in chapter Content Editor

Opens a Database Field Browser that shows all available
database fields. Use this Smart Button if you want to insert
a database field into the associated UI component. More
information about the databases can be found in chapter Db
Step.

Opens an Operator Browser that shows all available operators.
Use this Smart Button if you want to insert an operator (e.g.
a SQL operator) into the associated UI components. More
information about operators can be found in chapter Db Step.

Opens an Web Service Configuration Browser that shows all
available Web Service configurations. Use this Smart Button
if you want to insert a reference to a web service configuration
into the associated UI components. More information about
Web Service configurations can be found in chapter Web
Service Call Step.

Opens a HTML Tag/Attribute Browser that shows available
html tags and attributes. Use this Smart Button if you want
to configure html tags or attributes of the associated UI
component.

Opens a Link Browser that shows available link types. Use
this Smart Button if you want to insert HTML references
(e.g.) or URIs to certain artifacts. More
information can be found in chapter Link Browser

Opens a Color Browser that shows available colors. Use this
Smart Button if you want to insert a color definition into the
associated UI component.

Introduction

21

Smart Button Description

Opens a Font Browser that shows available fonts. Use this
Smart Button if you want to insert a font definition into the
associated UI component.

Cancels the current editing operation and resets the value in
the associated UI component to the value it has before the
editing was started.

Table 1.1. Smart Buttons

Refactoring Wizards

Refactoring wizards appear when you rename, move, delete or copy/paste Axon.ivy artifacts.

The wizards allow you to specify the new name/namespace/location of the artifacts that should be refactored and will give
you an overview of the result of the operation before it is actually executed, so that you can estimate the consequences.

All refactoring wizards have the same structure:

• On the first page you enter the parameters of the operation (e.g. new name and/or namespace, target project, etc.) if any
are required. Also you may chose whether any existing references to the refactored artifact should be updated automatically
(e.g. if you rename a sub process then all callers to that sub process will be updated, so that they point to the renamed
instance). This is the default behavior.

• On the second page you will be presented with a list of references that will be broken after the operation is executed.
This page is not displayed, if no broken references are detected. This page is only displayed for delete or move refactorings,
i.e. if the artifact will no longer exist in the scope of any callers that referred to it before the operation.

• On the third page, you will eventually be presented with a detailed list of operations that will be performed as a result of
the selected refactoring and possibly a preview of any old and new resources that will be created. You may individually
de-select any operations, they will then not be executed when you press Finish.

Warning

It is recommended that you don't uncheck any of the scheduled operations (unless you know exactly what
you're doing), since this may leave the workspace in an inconsistent state.

Introduction

22

You can get from one page to another by pressing the Next and Back buttons, however there is no requirement to have a look
at all three pages. As soon as the Finish button is enabled (this may not be the case, if some required input is missing on the
first page), you may press it and execute the operation immediately.

Rename Wizard

Change the name and/or namespace. If you enter invalid values then an error will be displayed.

If you leave the Update references box checked, then all existing references to the renamed artifact (within the current
workspace) will be updated automatically. Otherwise, no callers or references will be updated, which will possibly result in
broken references.

Note

Please note, that the namespace for processes is written with forward slashes '/' as separators (e.g. 'MyProcesses/
Customer/Invoice') while the namespace for Data Classes and User Dialogs is written with a dot '.' as separator
(e.g. 'customerportal.users.Employee').

Click on Finish to actually rename the selected resource(s) or on Cancel to abort the operation.

Introduction

23

Move Wizard

Select the destination project for the move operation from the proposed list.

The moved artifact will keep it's original name and namespace.

Click on Finish to actually move the selected resource(s) to the selected project or on Cancel to abort the operation.

Delete Wizard

If the selected resources are not Axon.ivy artifacts, then you will be presented with a confirmation dialog for the delete
operation.

If you select an Axon.ivy artifact (Axon.ivy projects, User Dialog, Process, Data Class) for deletion, then you might be
presented with a list of references that will break, if the operation is executed.

Click on Finish to actually delete the selected resource(s) or on Cancel to abort the operation.

Copy Wizard

The copy wizard appears when you execute the Paste operation (either through the menu action Paste or with Ctrl-V) after
having copied something to the clipboard (e.g. through the menu action Copy or with Ctrl-C).

The copy wizard lets you change the project, name and namespace of the copy that will be created. All of the parameters
are already filled in, the system tries to make educated guesses, if the selected target location is not valid or does not supply
sufficient information (e.g. if a resource with the same name already exists at the paste location, then the name of the copy
will be automatically have a "CopyOf" prefix).

Introduction

24

Click on Finish to actually paste the copied resource(s) to the defined location or on Cancel to abort the operation.

25

Chapter 2. Process Modeling

Projects

Overview

Axon.ivy Projects can be seen as development modules that encapsulate the processes and other artifacts that form an
application. An Axon.ivy project roughly comprises of processes, User Dialogs, Data Classes, a Content Management System
and various configurations. All of those aspects are explained in separate chapters of this document.

Projects can be reused, i.e. any project can depend on functionality which is implemented by another project. Projects that
implement reused functionality and/or artifacts are called required projects with respect to the project that makes use of that
functionality. The latter is in turn called the dependent project with respect to its required projects.

Once you have finished your development you will usually want to install the implemented application or workflow on an
Axon.ivy Engine. Projects form the single unit of deployment for this purpose, i.e. you deploy each project into a container on
the engine which is called process model version. A project may be deployed in multiple versions on the engine; each process
model version therefore contains a snapshot of a project at a specific point of time in development. See chapter Deployment
for more information on this topic.

The data that specifies a project's deployment information is contained in the project's deployment descriptor. The deployment
descriptor (formerly known as library) specifies all of the required projects and the specific versions in which they must be
present on the engine in order for the deployed project to work. The descriptor also defines an unique deployment ID and
the development version of a project (not equal to the process model version), as well as some information about the project
provider and a description of the project itself.

On the engine, a project in a specific development state/version corresponds to a process model version, as explained above.
On the engine, all the deployed versions of a project are children of a process model container (which corresponds to the project
as an entity without a specific version). The process models themselves are part of an application (see chapter Deployment
for a more thorough explanation).

In the Designer, projects may only exist in one version at a given point of time. Projects are created and organized inside an
Eclipse workspace. Roughly, on the Designer, the workspace corresponds to the application on the engine. Since projects can
only exist in one version on the Designer, there is no process model equivalent necessary in the Designer.

When working on a project, which depends on other projects, then the required projects need to be present as well in the
Designer, which means that they must be present in the current workspace. Otherwise dependencies cannot be resolved and
reused artifacts are not available, which will prevent the application from running.

Ivy Archives

There are two different types of Axon.ivy projects available. Normal Axon.ivy projects are used to develop artifacts. Artifacts
in those projects are changed frequently. Once the artifacts of a project are developed and stable you can export the normal
Ivy project to an Axon.ivy Archive. Archives are pre-built Ivy projects that are stored in one single *.iar file.

Ivy Archives can be imported to a workspace like normal Ivy projects. All artifacts of an Ivy Archive can be viewed but not
edited. Archives already contain all built artifacts. Therefore, they do not have to be built or validated again in the workspace.
As a consequence Ivy Archives will improve your workspace build, refresh and update time.

There are multiple ways to create or import Axon.ivy Archives:

• Axon.ivy Archives can be exported and imported.

• Axon.ivy Projects can be packed (archived) or unpacked (unarchived) inside the workspace.

Process Modeling

26

Figure 2.1. Pack Axon.ivy Archive (*.iar)

Figure 2.2. Unpack Axon.ivy Archive (*.iar)

Tip

Ivy Archives are not validated automatically. Validation can be started manually by using the context menu.

Ivy Project View
Here all the projects (including their content) in a given workspace are displayed in a tree view. This is the central component
to obtain an overview of the project and to start the specific editors for all Axon.ivy entities.

Figure 2.3. The Axon.ivy Project View with some content

Some of the entries are categorized such as User Dialogs and processes, but in general double-clicking on the leafs opens the
corresponding editor. Furthermore a popup menu is provided with the most important interactions:

• New... - Opens a wizard for creating new Axon.ivy entities such as User Dialogs or processes

• Refresh - Use this to inform and refresh the project tree whenever the project resources have been changed externally.
Axon.ivy with other applications.

• Close Project - Closes open projects. Closed project are still visible in he workspace but you cannot browse their content
or execute them.

• Open Project - Opens closed projects.

• Convert Project - Converts a project so that it has the newest format.

• Export Axon.ivy Archive (*.iar) - Starts the Export Wizard to export normal Axon.ivy projects to Axon.ivy Archives.

Process Modeling

27

• Import - Opens the Import Wizard. Very useful to import new projects from the file system or from a Source Repository
such as Subversion or CVS

• Export - Opens the Export Wizard to exchange certain artifacts with other installations.

• Rename - Let you rename your resources (User Dialog, Data Class, Process, etc.) while keeping references to those artifacts
intact. This menu item is only shown, if the selected resources are eligible for renaming. If renaming is possible, then the
rename wizard will be shown, where you can enter a new namespace and/or name for the selected artifact.

Warning

Please, rename your resources only in Axon.ivy and not in Java or Resource perspectives. Trying to do
renaming of Axon.ivy artifacts in other perspectives may result in an unusable project.

Tip

Commit your project in SVN before performing any rename operations.

• Move - Moves the selected resources to another project. The move wizard will be shown, allowing you to select the project
to which the resource(s) should be moved.

Note

If Axon.ivy artifacts (such as User Dialogs, Processes or Data Classes) are moved, then the wizard will show
an overview of the references (e.g. calls to sub processes) that might be broken by the operation.

• Copy - Copies the selected resource(s) to the clipboard

• Paste - Pastes the content of the clipboard into the selected node.

Note

The copy operation is intelligent: it tries to guess the correct location from the contents inside the clipboard,
if the selected target node is not suitable for pasting. If there is a conflict upon paste (e.g. because the result
would be two resources with the same name) then the copy wizard is presented with a new name suggestion,
where you may modify the name and/or namespace of the pasted resource(s) before the operation is executed.

• Delete - Removes the selected node from the project. Multiple resources may be deleted at once.

Note

If Axon.ivy artifacts (such as Axon.ivy projects, User Dialogs, Processes or Data Classes) should be deleted,
then the delete wizard opens and shows an overview of the references that might be broken by the operation.

Tip

Commit your project in SVN before performing any delete operations.

• Open with - Lets the user choose with which editor the selected entity is opened. It is possible to view a textual representation
or a possible external editor for the entity.

• Team - Gives access to the Team functionality offered by CVS or SVN

• Compare with - Compares the current version of the entity with an older version from the local history or (if used) from
the Source Repository.

• Replace with - Replaces the current version of the entity with an older version from the local history or (if used) from the
Source Repository.

Process Modeling

28

• Properties - Useful on the project level to set the properties and preferences of the project

New Project Wizard

Overview
The New Axon.ivy Project wizard lets you create a new Axon.ivy project. The wizard consists of three pages, of which two
are optional.

On the first page you must specify the settings that are required for the new project. After filling those in, you may already
press finish to create the new project.

The second and third page are optional and you do not have to complete them. However, they allow you to specify information
with regard to deployment that you would otherwise have to specify at a later point of time, by using the deployment descriptor
editor.

Accessibility
File -> New -> Axon.ivy Project

Features

Figure 2.4. New Project Wizard: First Page

This page lets you define the minimally required settings for a new project.

Project name Chose a name that describes the contents or the purpose of your project. You are not
allowed to use any special characters or spaces.

Group ID Identifies your project uniquely across all projects. It has to follow the package name
rules, what means that has to be at least as a domain name you control, and you can
create as many subgroups as you want. e.g. com.acme.ria.

Project ID You can choose whatever name you want with lowercase letters and no strange
symbols, e.g. users or user-manager.

Process Modeling

29

During deployment to the engine the concatenated Group ID + Project ID will act as
unique identifier of the project, once it is deployed.

Default namespace Define the default namespace for your project. This namespace will be used as standard
namespace for new Axon.ivy artifacts. It is also the namespace into which the project's
default data class (Data) will be generated.

Create default configurations If your project is a base or standalone project (e.g. if it doesn't have any dependencies
on required projects) then you should leave this box checked. As a result of this, the
new project will be initialized with default configurations in its configuration database.

However, if you're creating a project that is dependent on other projects (see wizard
page 2) then you should uncheck this box, because configurations are inherited from
required projects. If you'd leave the box checked, then the default configurations that
would be created for the new project would possibly shadow (i.e. override) custom
configurations with the same name from any required projects that you may have.

Figure 2.5. New Project Wizard: Second Page

The second page is optional. It allows you to specify any initially project from the workspace as a required project.

Required Projects Check the projects that the new project should be depend upon. The selected projects will
automatically be required with the version that they currently have in the workspace. The
maximum version will be left open.

You can always reconfigure the required projects at a later point of time in the Project Deployment
editor.

Warning

Please note that adding required projects may produce a warning (as shown in the snapshot above) due to
the generated default configurations. The reason for this warning is explained in the First Page section above
(Feature Create default configurations).

Process Modeling

30

Figure 2.6. New Project Wizard: Third Page

The third page is optional. It allows you to define information about the implementor and the purpose of the new project.
This information has documentation value only.

You can always specify and change this information at a later point of time in the Project Deployment editor.

Provider Define the company or individual that develops and maintains this project.

Description Describe the purpose of the project's contents or what the application is, that it implements.

Importing a Project

Overview

You can import existing Axon.ivy projects into your workspace using the Import Wizard. Projects can be exported from the
workspace using the Export Wizard (See section Exporting a Project). This allows you to exchange or share your projects
with other people.

Accessibility

You can access the Import Wizard over the menu:

File -> Import ...

Features

For Axon.ivy users the following import sources and formats are useful:

General > Existing Projects into
Workspace

Imports a project from a project directory located somewhere in the file system into the
workspace. The project directory may or may not be located in the workspace directory.

Process Modeling

31

Figure 2.7. Import Wizard for Existing Projects

In the wizard page seen above you can select either the directory where your project(s)
resides or a archive file (zip, jar, tar-gz) that contains the project(s). If Axon.ivy find
valid projects in the given directory or archive file, they can be (de-)selected for the
import and you can decide whether the projects should be copied into your workspace
directory or not (which has no effect if a project already is in the workspace directory).
After clicking on the button Finish the import is performed and you will find the
imported projects in the Axon.ivy Projects View .

SVN > Checkout Projects from
SVN

Checks out a project from a subversion source control repository into a new local
working copy directory and imports it into the workspace.

Axon.ivy > Axon.ivy Archive
(*.iar)

Imports Axon.ivy Archives (*.iar) into the workspace.

Figure 2.8. Import Wizard for Axon.ivy Archives (*.iar)

Process Modeling

32

In the wizard page seen above you can select the directory where your Axon.ivy
Archives resides. If Axon.ivy finds valid Axon.ivy Archives in the given directory,
they can be (de-)selected for the import and you can decide whether the Axon.ivy
Archives should be copied into your workspace directory or not (which has no effect if
an Axon.ivy Archive already is in the workspace directory). After clicking on the button
Finish the import is performed and you will find the imported Axon.ivy Archives in
the Axon.ivy Projects View .

Xpert.ivy > Xpert.ivy 3.9 Project
(*.csp)

Use Axon.ivy Designer 7.0 or earlier if you need to import an Xpert. ivy 3.9 project.

Importing demo projects
The Axon.ivy Designer ships with several demo projects that are located in the applications/samples directory of
the Designer installation. Those demo projects are delivered in the Ivy Archive (*.iar) format and can be imported with the
help of the Sample icon on the welcome page.

Following projects are delivered with the Designer:

Project name Demo content

ConnectivityDemos Demonstrates the consuming and providing of REST services
with ivy.

ErrorHandlingDemos Samples that demonstrate the Error Handling.

HtmlDialogDemos Demonstrates several JSF components that can be used in
Html Dialogs.

QuickStartTutorial The same project that is built in the QuickStart Tutorial.

RichDialogDemos Demonstrates several ULC components that can be used in
Rich Dialogs.

RuleEngineDemos Shows how to use the Rule Engine.

WorkflowDemos Demonstrates how to handle typical Workflow use cases,
makes use of features like Signals and Business Data.

Table 2.1. Demo projects in the Designer.

Exporting a Project

Overview
Axon.ivy projects can be exported from the workspace to various output formats using the Export Wizard.

Accessibility
You can access the Export Wizard over the menu:

File -> Export ...

Features
For Axon.ivy users the following output formats are useful:

General > Archive File Exports projects to a *.zip or *.tar file.

Process Modeling

33

General > File System Exports projects to the file system.

Axon.ivy > Axon.ivy Archive
(*.iar)

Exports a normal Axon.ivy project to an Axon.ivy Archive (*.iar file).

Figure 2.9. Export Wizard: Export Axon.ivy Archive (*.iar)

Converting old 4.x Projects

If the project format version changes with a new Axon.ivy release, then old projects will show an error marker, describing them
as out of date or having an invalid version. This can happen, when the technical format for Axon.ivy projects changes with a
new Axon.ivy release (e.g. the way how some artifacts are stored may be changed, new artifacts may be introduced, etc.). :

Figure 2.10. Wrong project version marker

If you inspect your project's properties, the main page will show you the actual project version and inform you whether it is
up to date or not (see Project Properties below):

Figure 2.11. Project version before conversion

Process Modeling

34

Figure 2.12. Project version after conversion

Axon.ivy can convert your old projects automatically to the newest project format for you. During this process, all existing
artifacts will be converted (if necessary) so as to work with the new Axon.ivy version, and any missing but required artifacts
will be added.

To run the project conversion, select the project's node in the Axon.ivy project view and right click to bring up the context
menu. Select Convert Project to initiate the conversion. A log screen will appear that documents the conversion process
(this log is also saved in the logs/ folder inside your project), and which will inform you about whether the conversion was
successful or not.

Figure 2.13. Invoking the project conversion

Note

You can not use this feature to convert 3.x projects. It only works for 4.x project versions.

Warning

It is absolutely recommended that you create a copy of your project before invoking the conversion. Alternatively
you can have your project under version control. In this case, make sure that all your projects are checked in,
before you invoke the conversion, so that you can easily roll back (revert) to the old version, if conversion should
fail for some reason.

Project Properties (Project Preferences)

You can access the properties and preferences of a project either over the item Properties in the popup menu of the Axon.ivy
Projects View or over the menu item Project -> Properties. Here you can redefine almost all of the global workspace
preferences and override them with project-specific values.

Process Modeling

35

Additionally, the project preferences allow you to define values for some project-only properties, that do not have a global
default value. Those are described in the sections below.

Axon.ivy - Project Information

The main project properties page shows information about the project.

Figure 2.14. Project Properties Axon.ivy information

Project format version Shows the version of the project format. If the project was created with an old version
of Axon.ivy, this is indicated with an warning message. Consult the Chapter Project
Conversion to learn how to convert your project to a new version of the project format.

Number of process Elements Shows the number of process elements in this project.

Content Management System Settings

The languages in the CMS and the defaults for HTML dialog pages can be set here.

In the list at the top you can add and remove languages to/from the CMS and you can set the default language. Just below you
can define whether Axon.ivy should automatically create a value for every language of the CMS if you create a new Content
Object. Do not use this option if you do not need content in multiple languages or if you export the CMS content to translate
it. Use the option if you know that you need to translate the vast majority of Content Objects within the Axon.ivy Designer

Process Modeling

36

Furthermore, you have the choice between different HTML page layouts and CSS style sheets for use as default values for
HTML dialog pages.

Data Class Settings

Allows you to specify the default namespace and the name of the project Data Class.

IvyScript Engine

Automatically imported classes Allows you to specify fully qualified class names which should be automatically
available with their simple class names in every ivy script code.

Java

With these preferences you can adjust the Java settings of the project.

Figure 2.15. Java preferences

Optional classpath containers Defines optional libraries which can be accessed by Java or IvyScript code of the
project.

If migrated your project from 6.0 or older you may have used CXF or AXIS2 libraries
by accident in your code. With the classpath container checkboxes you can put these
libraries on the classpath to avoid compilation or runtime errors.

Project Deployment Descriptor
Each Axon.ivy project has a deployment descriptor. The deployment descriptor defines various properties of a project that
are important with respect to deployment on the engine. Specifically the descriptor defines:

1. An unique project ID (i.e. a fully qualified symbolic name) for the project, by which it can be identified and referenced.
Also, a current development version of the project is defined (please note that this version may, but does not necessarily
have to be, identical with the project model version on the engine into which the project will eventually be deployed).

2. The dependencies of a project to other projects and the exact version range of those projects that must be available in
order for the project to work. Once a project is referenced in this way, it's artifacts may be used inside the referencing
project. This applies especially to the following artifacts: User Dialogs, Data Classes, Web Service Configurations, CMS
Entries, Configurations, Java classes or Java libraries (JAR files).

3. Information about the implementor of the project and it's purpose.

Process Modeling

37

The following figure illustrates the above:

Figure 2.16. A project dependency, defined by the Project Deployment Descriptor

Since referenced projects may in turn reference other projects, a whole (acyclic) dependency graph may be constructed this
way. All artifacts of projects that are reachable from some project in this way (i.e. by following the arrows) can be used.

The following figure illustrates this feature. For example, a User Dialog defined in Project D may be used in Project A. A
Data Class that is defined in Project E may also be used in Project A. However, it is not possible to use a Sub Process defined
in Project B from Project C (unless Project B is added as required project in the deployment descriptor of Project C).

The search order to look up reused artifacts is breadth first. The order, in which directly referenced projects are looked up,
can be defined in the Deployment Descriptor editor.

Figure 2.17. Project Dependency Graph

Projects may be required with a specific version or within a specific version range. This is also illustrated in the above figure.

When deploying projects on the engine, the availability of the required projects (and their versions) is checked. If the required
project versions can not be resolved, then a project can not be deployed. Therefore projects must be deployed bottom up, i.e.
one must start by deploying first the required projects that are lowest in the dependency hierarchy.

Deployment Descriptor Editor
The Deployment Descriptor editor allows to edit a project's deployment properties as well as the required projects and their
version ranges as described above. Most of those properties can already be specified in the New Project Wizard, when a
project is initially created.

Process Modeling

38

The deployment descriptor editor consists of two tabs:

• The Deployment tab is used to configure the project's own deployment information.

• The Required Projects tab is used to define other projects (possibly in a specific version) that the project depends on.

The deployment description is stored as Maven pom.xml so that Ivy Projects can be built on a continuous integration server.
See “Continuous Integration”

Accessibility

Axon.ivy Project Tree -> double click on the Deployment node inside the project tree ()

Deployment Tab

Figure 2.18. Deployment Descriptor Editor: Deployment Tab

Group ID Identifies your project uniquely across all projects. It has to follow the package name rules, what
means that has to be at least as a domain name you control, and you can create as many subgroups
as you want. e.g. com.acme.ria. .

Project ID You can choose whatever name you want with lowercase letters and no strange symbols, e.g. users
or user-manager.

During deployment to the engine the concatenated Group ID + Project ID will act as unique identifier
of the project, once it is deployed.

Project Version The current development version of the project.

Provider The name of the user or company that implements and maintains (i.e. provides) the project. The
provider setting has not functional purpose. It is for documentation only.

Description A (short) description of the project's purpose and contents. The description setting has no functional
purpose. It is for documentation only.

Process Modeling

39

Required Projects Tab

Figure 2.19. Deployment Descriptor Editor: Required Libraries Tab

Required Projects A table shows the list of the required projects, both with their name and their ID (as
defined in the project's deployment descriptor). The table also shows the version range
in which the referenced project must be available.

Name The display name of the required project (how it is shown in the
workspace).

ID The unique identifier of the required project.

Version The range specification of the version that the referenced project is
required to have.

Note that the order in the table defines the order how referenced artifacts are searched
(Use the Up Button and Down Button to change the order). The general search order
in the dependency graph is breadth first, but the order that you define here is the search
order that will be used at a specific node when searching the graph.

Clicking the Add button brings up a dialog with a selection box, in which any of the
projects that are currently present in the workspace may be selected as required project.
Closed projects or projects, that are already (directly) required, can not be selected.

Selecting an entry in the table and subsequently clicking the Remove button removes
a project dependency.

Required Project Details Shows the details of the currently selected project.

Group and Project ID The identifiers of the required project (not editable).

Maximum Version Optionally specify the maximum version that the
required project needs to have. Choose whether you
want to include or exclude this maximal version by
checking the Inclusive box

Minimum Version Optionally specify the minimum version that the
required project needs to have. Choose whether you
want to include or exclude this minimal version by
checking the Inclusive box

Process Modeling

40

Warning

Beware of cycles in the project dependencies! You should never require a project B from a project A, if B also
requires A (or if B requires any project that in turn requires A, which would form a larger cycle). Error markers
will be displayed when the workspace is built, and cycles are detected, because this condition can lead to endless
recursion and other unpredictable behavior when looking up artifacts.

Project Graph view
The Project Graph view shows the dependency graph of all projects in the workspace.

Toolbar actions

 Refreshes the complete graph. Manually moved nodes will be re-arranged by the auto layout algorithm.

 Selects the zoom level of the view.

 Selects the layout algorithm that arranges the nodes and dependency edges in the view.

 Automatically opens the Project Graph whenever a Library Descriptor Editor is opened.

Graph actions

• Double click on a node to open its Library Descriptor Editor

• Drag a node to improve the layout

• Click on a node to highlight it

Accessibility

• Windows -> Show View -> Axon.ivy -> Project Graph

• CTRL + 3 (Quick Access) -> Project Graph

• Deployment Descriptor Editor -> Open Project Graph from header toolbar

Process Modeling

41

Validating Axon.ivy projects and resources

Overview
Axon.ivy comes with various validators which verify that projects and it's resources do not have any errors. After a resource
has changed the responsible validator will run automatically and report errors or warnings.

Validating projects and resources
To manually validate a project or a resource you can right click on it and select Validate.

After the validation the errors are shown in the Problems view.

Validation preferences
Go to Window -> Preferences -> Validation to get an overview of the validations that are run.

Warning

It is recommended not to change these settings. It could lead to problems while running the projects.

Process Modeling
This chapter introduces Axon.ivy processes and how to work with them. The creation and logical organisation of processes
is explained as well as the functionality of the Process editor and the different kinds of processes.

Process Modeling

42

Process Kinds
There are different kinds of processes. Their use and capabilities are explained in the sections below.

Business Process

Business processes are the regular kind of processes that are used to implement business cases. Business processes contain
starts that can be selected by any user from his/her workflow list or from the list of star table processes.

Embedded Subprocess

An embedded subprocess is essentially a syntactical collapse of elements into a single element to hide details from process
design. They are available in all other process kinds. The hierarchy of embedded subprocesses is potentially indefinite, i.e.
you can create further embedded subs inside an already existing subprocess.

Since embedded subprocesses are simply a structural means for process diagram simplification, no mapping of data is required
when entering or leaving this kind of subprocess (i.e. inside an embedded subprocess the same data is available as inside
the caller process).

Warning

Wrapping process elements into an embedded subprocess does not influence the functionality of most process
elements. But the wrapping influences the way process elements are addressed by Axon.ivy. This may cause
incompatibilities with older versions of the process and will hinder you to deploy such a process over an already
deployed older version of the process. The process elements that may cause such incompatibilities are:

• Task Switch

• Task Switch Simple

• Intermediate Event

• Call And Wait

Independent Subprocess (Callable)

An independent subprocess (callable) is a process, that can be called from any other process with the call subprocess element.
Independent subprocesses can be used to factor out frequently used functionality which can then be reused by any other
process.

Because callables are independent implementations of processes (or parts of process logic) they have an own Data Class
which might not match the caller's data. Therefore parameters need to be mapped in both directions when entering and leaving
an independent subprocess.

To create an independent subprocess, select the callable process option from the New Process wizard. The created process
will contain special start and end elements that must encompass the process implementation.

Web Service Process

Web Service processes are a special case of independent subprocesses. A Web Service process can be started (i.e. called)
from any other application (or from another process) by using the Web Service call element or any other SOAP web service
compatible client..

A web service process will provide a web service with one or more operations, which are defined by the Web Service Process
Start elements within the process. Each of these start elements have their own input and output parameters that will be mapped
to and from the process data.

Due to the nature of web services, which are intended to be called by another applications and not by a user directly, no
user-interaction (HTML or User Dialogs) is allowed within such a process. If the process does contain user-interaction an
exception will be thrown.

Process Modeling

43

To create a web service process, select the Web Service Process option from the New Process wizard. The created process
will contain special start and end elements that must encompass the process implementation.

User Dialog Logic

User Dialog logic processes are the implementation of the behavior of User Dialogs, the controller in the MVC pattern. A
whole new set of elements is available for this kind of processes (from the User Dialog drawer on the process editor palette),
while other elements (such as task switch or HTML page) are not available for conceptual reasons.

A User Dialog logic process is invoked with an User Dialog element inside a business process. Its execution starts with an init
start element and ends with a dialog exit element. The two elements do not need to have a direct connection (in fact they never
have). Once a User Dialog process is running, it is driven by user interface events which will trigger individual sub processes.

Note

Calling a process based User Dialog (and thus executing its logic) can (or rather should) be seen as equivalent
to calling of a callable process with the sole difference that the User Dialog offers a user interface that allows
a user to interact with the process logic directly.

However, from an abstract point of view, a User Dialog is nothing else than a function call. It is invoked with
a list of (optional) arguments and returns a list of result values. This is exactly the same behavior as a callable
process offers.

New Process Wizard

Overview
The New Process Wizard lets you create a new Business, Callable Sub or Web Service Process.

Accessibility
File > New > Process

Process Definition (page 1)

Figure 2.20. The New Process Wizard

Project Choose the project where the new process should be created.

Namespace Select a group where the new process will be inserted (this is roughly equivalent to a namespace). Select the
<default> process group to create a process directly below the project's processes folder (i.e. equal to "no

Process Modeling

44

group"). You can click on the group folder button to open the New Process Group Wizard, if you want to
create a new group "on the fly". The process groups are listed relative to the project's process folder.

Name Enter the name of the new process.

Type Business Process: This option is the default option an creates a normal standard business process. Use this
option to implement your business logic.

Callable Sub Process: This option creates a callable sub process including a process-call-start element and a
process-call-end element. You need to implement your process between those two elements. It is allowed to
have multiple Process Starts and Process End elements in a callable process.

Web Service Process: This option creates a web service process which can be called from other systems. WS
Start and WS End elements will be created automatically and you can implement your process between these
elements. Please note that no user interaction may occur in a web service process.

Process Data (page2)

Figure 2.21. Simple Process Data selection on page 2

Process Data default: Select this option to use the project's default data class as data structure for the new process.

existing: Select this option to choose an already existing data class as data structure for the new process.
Any existing Data Class can be chosen with the class selector button on the right side. It is strongly
recommended to select a data class from the project where the process will be created in order to
avoid dependencies on the implementation of another project.

create new: Select this option to create a new, empty data class that will be associated with the new
process. Enter the name of the new data class to create (including namespace). Initially a data class name
that is based on the new process' name and group will be suggested, but you're free to change it.

Process Modeling

45

Process Data with simple mapping (page2)

Figure 2.22. Process Data selection with auto data Mapping

Callable Sub Processes often consume or return data from a high level process. The data which is passed to and given back
to the caller process can be easily mapped within this page.

Callable Sub Process Data Defines the Data Class which is used within the Process to create. The simple mapping
parameters below are only available if a new Data Class is created or when the Callable
Sub Process uses the same Data Class as the caller Process.

Parameters The Caller Data references the Data Class from the Caller Process. The fields of this
Data Class can be automatically mapped to the Callable Sub Process Data.

In the mapping table below the Caller Data the In and Out arguments for the new
Process can be defined. If any mappings are chosen, the Wizard will automatically
configure the Call Sub Start Event, it's internal input mapping (param > in) and it's
output mapping (out > result). The calling process element of the high level process
will also be inscribed with input- & output mappings, if the new Process Wizard was
opened from the Call Sub inscription step.

New Process Group Wizard

Overview

The New Process Group wizard lets you create a new grouping folder for business processes. Process groups can be nested.

Note

The process group is just used to categorize similar processes. A process is always treated independent from
its parent process group(s)

Process Modeling

46

Figure 2.23. The New Process Group Wizard

Accessibility
File > New > Process Group

Features
Project Name Choose the project that your group belongs to.

Parent Group Name Select a group that is the parent of your new creating group.

Process Group Name Enter the name of the group that you wan to create.

Import Axon.ivy Modeler Processes

Overview

Processes exported in Axon.ivy Modeler as BPMN XML Export can be imported into the Designer through the Axon.ivy
Modeler Process importer.

Figure 2.24. The Axon.ivy Modeler Process importer

Process Modeling

47

Accessibility

File > Import > Axon.ivy Modeler Processes (*.xml)

Features

From directory A directory containing the Modeler BPMN Files. It's allowed proved a directory
structure.

File selection Selection of any valid Modeler BPMN Files within the From directory

Into folder A directory pointing to a process group. All imported processes will be stored in
this process group. In case the specified folder does not exist, it will be created
automatically.

Option: Create roles for lanes If the Modeler BPMN Processes selected for import contain lanes, it's possible to create
new roles from the lane names in Axon.ivy Designer automatically trough the import
by this option.

Compatibility

The Axon.ivy Designer supports the import of processes from the Axon.ivy Modeler 3.1.0. The internal version in the exported
XML file is 97.1.0. Other versions or plain BPMN2 XML files might be imported anyway, but they are not supported.

<bpmn:definitions ... exporter="GBTEC BIC" exporterVersion="97.1.0">

Mapping of Elements by the importer

Axon.ivy Modeler and Axon.ivy Designer are tools to serve different needs, hence it's no possible to map any process element
of the Modeler to exactly one corresponding element in Designer through the importer. As a consequence, the importer follows
to main goals:

• Achieve as much recognition of the Modeler process as possible

• Provide a good basis for further implementation of process design

The mapping follows following rules:

Pools and lanes Position, size and labels of swimlanes are adopted from the Modeler process.

Position and size of process
elements

Position and size of process element nodes as well as any waypoints of process arc are
adopted from the Modeler process.

Process events In general, all process events are mapped directly to an event in the Designer.

Sub processes Sub processes are mapped to an Embedded Sub element in the Designer.

Gateways Exclusive gateways are mapped to an Alternative. Any other gateways are mapped to
a Task Switch.

Tasks In general, task process elements are mapped to a BPMN Activity in the Designer. If
possible, the process element is mapped to a specific element e.g. User or Manual.

The BPMN Activity elements behave basically similar to an Embedded Sub element, so
it is possible, to implement the behavior of this process element at a lower level without
changing the high level appearance of the process.

Links to other processes Links to other processes are mapped to a Subprocess Call in the Designer, the call
target remains empty after import.

Process Modeling

48

Text annotations Text annotations are mapped as Annotation in the Designer.

Data objects Data objects are mapped as Annotation in the Designer, to distinguish them from text
annotations, the differ in size and color.

Sequence Flows Sequence Flows are mapped as Connector in the Designer.

Message Flows Message Flows are mapped as Message Flow in the Designer.

Process Properties
Like the process elements that are used inside a process, the process itself has an inscription that allows to specify and edit a
processes properties. To open and show a the inscription mask of a process you simply select the process in the Ivy Projects
View, right-click and select inscription from the pop-up menu.

Name and Description

The common name tab allows to specify name, description and associated documents for each process.

Values

The values tab allows to specify the data class that will be used to define the process's data structure.

Each process must be associated with a data class, otherwise the tab will show an error. The used data class is initially specified
with the New Process Wizard, but you may change this association at any later time.

You can use the (C) button next to the data class field to select any existing data class that is visible to the edited process.
Please note that it is strongly recommended that you only set data classes that are defined in the same project as the
process in order to avoid dependencies on the specific implementation of another project.

It is legal for two processes to specify the same data class. This can be desired if the processes operate on the same set of data
(e.g. sub processes) and it may facilitate the mapping in some cases.

Web Service Process

The Web Service Process tab is only available on web service processes and allows to specify the web service configuration.

The Fully qualified Web Service name will be used to generate the web service class and the WSDL. The namespace part
will be used as targetNamespace in the WSDL. Choose this name carefully since it should not be modified anymore as soon
as clients start using the web service.

The Web Service authentication options allows you to specify how clients are authenticated when invoking the web service.
You can select one of the following available authentication methods:

None/Container Authentication is not handled by the web service element. However, if the web container (Tomcat) or a
web server (Microsoft IIS/Apache) handles user authentication, the user is passed through to Axon.ivy
(e.g. Single Sign On).

WS Security UsernameToken with Password will be sent in clear-text to the ivy engine.

Process Modeling

49

Warning

Only use this option in a trusted network or over a secure connection (e.g. HTTPS).

HTTP Basic Username and Password will be sent in clear-text to the ivy engine using standard HTTP Basic
authentication mechanism.

Note

HTTP Basic is the only authentication option that is supported by Web Service processes
and Web Service process elements in common. It can therefore be used to call a Web
Service process from a Web Service process element if authentication is required.

Warning

Only use this option in a trusted network or over a secure connection (e.g. HTTPS).

If the web container (Tomcat) or a web server (Microsoft IIS/Apache) already handels user
authentication, the user is passed through to Axon.ivy without doing an additional HTTP Basic
authentication.

Process Editor
The Process editor is used to design and edit the different process kinds (mostly business and User Dialog logic processes).
The Process editor consists of two parts:

• the editor area where the process logic is constructed element for element and

• the palette where the elements that are to be placed inside the process are selected

Accessibility

Axon.ivy Project Tree > double click on a process node inside the project tree ()

Palette

The palette shows the process elements that are available for a specific process kind. The set of available process elements
may vary for different process kinds.

Tip

The purpose and configuration of all available process elements are described in detail in the process elements
reference chapter.

Process Modeling

50

Editor Area

Processes are designed, drawn and modified in the process editor area. Select an element from the palette, then click in the
process editor area to place it. Click and drag elements to replace them.

Arrows are drawn between two elements by clicking on the first element, then holding the left mouse button down until
releasing on the second element.

You have four context menus available in the Process editor: the editor menu, the element menu, the arrow menu and the
selection menu.

Editor Menu

To open the editor menu right click anywhere on the editor area's canvas (i.e. background). The following actions are available:

Leave Subprocess Will jump out of an embedded subprocess to the process that contains the Embedded
Sub element.

Select All Selects all process elements.

Copy (as Image) Copies the whole process (as image only) to clipboard.

Insert template Inserts an existing process template. Opens a selection dialog to choose the template
to be inserted, then inserts the selected template at the current mouse position. All of
currently defined process templates are also available from the Process Template View.

Paste Pastes a previously copied or cut element into the process at the current mouse position.

Undo Undo the last drawing command. The process editor keeps up to 100 commands in the
history buffer that can be undone.

Zoom In Zoom in to get a close-up view of the process model. The view is enlarged by a factor
of 20%. With a wheel mouse, you can also zoom in with the wheel together with the
Ctrl key.

Zoom Out Zoom out to see more of the process model at a reduced size. The view is reduced by
a factor of 20%. With a wheel mouse, you can also zoom out with the wheel together
with the Ctrl key.

Zoom 100% Reset the zoom factor to the default size.

Change orientation of swimlanes Changes the orientation of pools and lanes from horizontal to vertical or vice versa.

Add pool Adds another pool before the swimlane at the current mouse position.

Add lane Adds another lane before the lane or inside the pool at the current mouse position.

Edit pool/lane Opens the configuration of the pool or lane at the current mouse position

Remove pool/lane Removes the pool or lane at the current mouse position

Inscribe Process Opens the configuration editor of the process.

Element Menu

To open the element menu right click on an process element. The following actions are available:

Copy See selection menu.

Process Modeling

51

Cut See selection menu.

Inscribe Opens the configuration editor of the process element.

Wrap Text Places the name of the element inside the element's icon. The icon size is stretched
accordingly.

Move Text Replaces the element's text with a box that can be moved around. You can also achieve
this by simply clicking and dragging an element's associated text.

Style See selection menu.

Open Document Reference Opens document URLs which are configured in the elements 'Name' inscription tab.

Attach boundary event Attaches an additional boundary event to the currently selected activity.

Breakpoint Add a regular or conditional breakpoint to the element or remove all breakpoints from
the element.

Connect Creates an arrow that starts at this element. Click on another element to create a
connection between the two elements. You can also create an arrow by clicking on the
process element where the arrow should start and then move the mouse while you keep
the mouse button pressed to the process element where the arrow should end.

Disconnect Disconnects this element from another element. Click on another element to remove the
connection between the two elements.

Move See selection menu.

Extended Functions Select from extended layout functions for the element. You can reset the default size of
an accidentally resized element. If elements are placed on top of each other you may
send an element to the back or bring it to the front of the element stack.

Delete Element Deletes the element.

The visibility of the following menu entries are depending on the type of the process element:

Start Process Starts the process that begins at the process element.

Send Signal Opens a dialog to send a signal. The dialog uses the signal code configured on the
process element as default value.

Enter Subprocess Enters the embedded subprocess and shows the encapsulated process.

Toggle Transparency Changes the transparency state of the embedded subprocess. This either hides the
process that is encapsulated by the embedded sub element or makes it visible.

Unwrap Subprocess The elements encapsulated by the embedded subprocess are placed into the current
process.

Change type Converts the Embedded Sub into another subprocess type (e.g. from BPMN User
Activity to BPMN Send Activity). The inner fields will be kept, but its field ids will
change. This makes the Process Model incompatible as when elements are wrapped for
the first time. See “Embedded Subprocess”

Search callers of this process Displays all callers of a Start in the Search view.

Search callers of this exception
element

Displays all process elements that call an Exception Start when an exception occurred.

Process Modeling

52

Jump to connnected element Will jump out of an embedded subprocess to the process that contains the Embedded
Sub element and selects the process element that is connected with the Embedded Start
or End Event.

Jump to referenced process Opens the process that is referenced by the process element.

Jump to User Dialog Process Opens the process of the User Dialog that is referenced by the process element.

Edit Page Opens the web page configured on the process element. If no page is configured then
the Create New Page dialog is opened.

Edit Java Class Opens the Java editor with the Java class configured on the process element. If no Java
class is configured the New Bean Class Wizard is opened.

Edit User Dialog Opens the view editor (e.g. ULC Visual Editor or JSF Editor) for the selected User
Dialog.

Arrow Menu

To open the arrow menu right click on a an arrow. The following actions are available:

Inscribe Opens the configuration editor of the arrow that the mouse is placed over.

Move Text Replaces the arrow's text with a box that can be moved around. You can also achieve this by simply
clicking and dragging the arrow's associated text.

Bend Relayouts the arrow's path on the editor's grid (use only rectangular angles).

Straighten Relayouts the arrow's path into a direct line without any angles.

Color Changes the color of the arrow.

Bring to front If elements and arrows are placed on top of each other then this action brings the one with the
cursor over it to the front of the element stack.

Send to back If elements and arrows are placed on top of each other then this action sends the one with the cursor
over it to the back of the element stack.

Reconnect Detaches the selected arrow's head from the element it is connected to and let's you reconnect the
arrow to another element.

Delete connector Deletes the selected arrow.

Selection Menu

To open the selection menu right click on a selected element or a group of selected elements (i.e. selection frame is visible).
The following actions are available:

Copy Copies the selection to the clipboard.

Cut Copies the selection to the clipboard and deletes all contained elements from the process.

Style Sets the style of the selected elements to a style in the predefined list of styles.

Auto Align Aligns the selected elements horizontally and vertically.

Same Width Assigns the same width to all of the selected elements. The resulting width is determined
by the widest element in the selection.

Process Modeling

53

Same Height Assigns the same height to all of the selected elements. The resulting height is determined
by the highest element in the selection.

Same Width and Height Combination of the menus Same Width and Same Height.

Set to default size Resets the size of the selected elements to their default sizes.

Wrap into Subprocess Creates an embedded subprocess from the selected elements.

Create template Creates a new process template from the selected elements. After prompting for a name for
the selection, the new template will be available from the Process Template View.

Delete selection Deletes all of the selected elements from the process.

Shortcut Keys

Some of the entries in the context menus are available with shortcut keys. To use them, place the mouse over a process element
and press the according key.

Swimlanes

Processes can be visually structured by using pools and lanes. Pools and lanes are colored background swimlanes with a label
that are placed behind the process logic. Swimlanes can have a horizontal or vertical orientation.

Swimlanes are available for all process kinds and are typically used to visualize organisations, roles, responsibility assignments
or systems for process elements or sections of process logic.

A pool or lane can be widened or narrowed by dragging it's border/edge with the mouse. By default, the position of process
elements lying outside the modified lane are adjusted accordingly. By pressing the Shift-Key during the drag, you can omit
the automatic adjustment of process elements.

Note

Please note, that pools and lanes do not have any syntactical meaning whatsoever; their purpose is purely
semantical. A pool or lane is not a container that elements are placed in or associated with. They are simply a
structured "coloring" of the process' background; they do not grow or shrink when you change the processes
logic and need to be adjusted manually.

Process Model Reporting Wizard

Overview

The Axon.ivy Process Model Reporting Wizard lets you create customized reports of your process models.

Process Modeling

54

Figure 2.25. The Process Model Reporting Wizard

Accessibility

Axon.ivy->Create Report...

Features

Name The name of the report that will be created. This name should be without file name
extension. E.g. use "MyReport" instead of "MyReport.pdf".

Output Format The report output format. Currently this can be HTML, PDF or DOC. You can also
select multiple report formats that should be created simultaneously.

Save to Folder Choose the location where the reports should be generated to. The default destination
where reports are stored is IvyDesigner/reporting/reports/.

Report Template Choose a report template, also known as BIRT report design file(*.rptdesign) which
defines the structure and contents of your report. There are some BIRT report designs
provided by default (e.g. Default.rptdesign). Please use the predefined report designs
unless you want to create a custom report design.

Process Modeling

55

Creating a custom BIRT Report Design

In case you want to create a custom BIRT report design you first need to
install a BIRT Report Designer which can be found on the BIRT Website.
With the BIRT Report Designer you can create your own reports. In order to
use the Process Model Data, as e.g. Process model images, process names,
User Dialog interfaces, data class attributes etc., or predefined themes in your
newly created report design, you need to use the IvyDesigner/reporting/designs/
Axon.ivy.rptlibrary BIRT Report Library within your report and link against its
Data Source, Data Sets and Parameters. In this way you will also be able to use
the predefined themes of the Report Library.

For further information on how the BIRT Designer can be used, please refer to
a BIRT Book or online Resource which can be found at http://www.eclipse.org/
birt/ or http://www.birt-exchange.com.

Corporate Identity This group of text fields provides you some additional, optional information to
customize your report.

• Title: Select a Title that will be shown on the first page of your report.

• Header: Select a Header for the report, that will be shown on every page.

• Footer: Select a Footer for the report, that will be shown on every page.

• Logo: Select a Company Logo Image that will be displayed on the first page of your
report.

Projects This Tree shows the currently active Projects that can be reported. You may check or
uncheck the individual Process Models, Process Groups, Processes, Rich Dialogs or
Data Classes that are to be reported.

Maximum nesting depth Choose the maximum depth up to which nested embedded sub processes should be
reported. By default and when the field is empty all embedded sub processes are
reported.

Cancel Button To cancel report creation. The current report configuration
settings will be stored to your_ivy_workspace/.metadata/.plugins/
ch.ivyteam.ivy.designer.reporting.ui/lastReportconfiguration.xml.

Save the Configuration... To save the report configuration you have entered up to now into an XML report
configuration file (*.rptconfig). This allows you to store multiple configurations for
different types of reports and reuse them later. Note that currently the selected Projects,
Processes, Rich Dialogs etc. are not remembered, as they might not be available
at loading time. The default place where the report configurations are stored is in
IvyDesigner/reporting/configurations/.

Load a Configuration... This allows you to load a previously stored report configuration files (*.rptconfig).

Create the Report... This will start the generation of the reports. While the report generation you will be
informed about its progress. After the report has been generated a confirmation window
will provide you with links to the generated reports. The default destination where
reports are stored is IvyDesigner/reporting/reports/.

The report configuration will be stored to your_ivy_workspace/.metadata/.plugins/
ch.ivyteam.ivy.designer.reporting.ui/lastReportconfiguration.xml

http://www.eclipse.org/birt/phoenix/

Process Modeling

56

Process Outline View

Overview
The outline view displays all elements of the process which is currently opened in the process editor.

Accessibility
Window > Show View > Other... > General > Outline View

Features
The outline view has the following features:

Selection Process elements which are selected in the outline view are selected in the process editor and vice
versa, which helps to search and manipulate elements, especially in large processes.

Classification Elements are grouped by their BPMN type, where the element type is visualized with an icon in front

of the element name. The element categories are start events , intermediate events , end events

, gateways and tasks .

Process Template View

Overview
The process template view displays the currently defined process templates. A process template is essentially a selection
of process elements that is stored under a specific name. Once defined, process templates can be inserted into any existing
process, either by drag and drop or by selection from a dialog. New process templates can be added to the template store by
pressing 't' on a selection of elements in the Process Editor.

Accessibility
Window > Show View > Axon.ivy > Process Template View

Features
The process template view has the following features:

Preview A preview for each selected template will be shown on the right-hand side of the process template view,
showing it's structure in detail.

Process Modeling

57

Drag-and-drop Templates can be dragged and dropped on the process editor. Press and hold the mouse down over a
template name and drag it over to the process editor to insert the template.

Context menu Selected templates can be renamed and deleted using the context menu or by pressing 'R' or 'DEL' keys,
respectively.

Export / Import
Process templates are stored per workspace. To export a set of process templates from a workspace use File > Export... >
General > Preferences > Process Templates. To import a set of template into a workspace use File > Import... > General
> Preferences.

Problems View

Overview
The problems view displays errors and warnings (problem markers) that exists in yours projects. You can double click an
error or warning in the view to open the associated editor.

Figure 2.26. Problems View

In the process editor process elements that have errors are marked with an error overlay icon.

Figure 2.27. Process Element with Problem Markers

Process Modeling

58

Accessibility

Window > Show View > Problems

Features

This view is a standard Eclipse IDE view. More information about the Problems View can be found in the Online Help:
Workbench User Guide > Reference > User interface information > Views and editors > Problems View.

Tasks View

Overview

The tasks view displays tasks that exists in yours projects. You can double click a task to open the associated editor.

Figure 2.28. Tasks View

In the process editor process elements that have tasks are marked with a task overlay icon.

Figure 2.29. Process Elements with Task Markers

Accessibility

Window > Show View > Other ... > General > Tasks

Features

This view is a standard Eclipse IDE view. More information about the Tasks View can be found in the Online Help: Workbench
User Guide > Reference > User interface information > Views and editors > Tasks View.

Reference View

Overview

The Reference view shows the references between the various Axon.ivy project artifacts. A reference of an artifact is
everything which is used/called from the artifact (e.g. call to a callable process or User Dialog) or which is embedded in

Process Modeling

59

the artifact (e.g. embedded sub element in a process or processes inside a project). Inverse references are the opposite of
references. This means an inverse reference of an artifact is everything which uses/calls the artifact or which contains it.

Figure 2.30. The Reference View

Tip

To work with references of process elements, there are also some useful features on the Process Editor “Element
Menu”

Overview of supported References

The following table shows all supported references between Axon.ivy project artifacts.

contains uses / calls

Pr
oj

ec
ts

Pr
oc

es
se

s

C
al

la
bl

es

U
se

r
D

ia
lo

gs

E
m

be
dd

ed
 S

ub

D
at

a
C

la
ss

es

Pr
oj

ec
ts

Pr
oc

es
se

s

C
al

la
bl

es

U
se

r
D

ia
lo

gs

E
m

be
dd

ed
 S

ub
s

D
at

a
C

la
ss

es

Project X X X X X

Process X X X Xa X

Callable X Xb Xa X

User
Dialog

Xa X X Xab

Embedded
Sub

X X Xa

Data
Class
(Entity
Class)

X

aUser Dialogs can be referenced also from other projects.
bCallable can reference itself.

Table 2.2. Overview over the supported references

Accessibility

Window > Show View > Reference View

Right click on a project, process, User Dialog or embedded sub element in the project tree > Show References or Show Inverse
References

Process Modeling

60

Figure 2.31. The Reference Menus

Features
The Reference view has the following functions:

Refresh () This function reloads the actual showed references.

Stop () This function stops the calculation of references.

Show References () This option shows the references of the actual root object.

Show Inverse References () This option shows the inverse references of the actual root object.

Simulating process models
This chapter deals with Axon.ivy debugging and simulation features. Processes, workflows, User Dialogs and changes on
these should be tested before being deployed on an Axon.ivy production Engine. Therefore the Designer allows to simulate
processes on your local computer, to debug it in depth and to inspect the execution history of all variable values. Hereby the
process flow can be animated to visually observe the actual process execution sequence.

Simulation
A simulation can be started directly on the Request Start element or on the Designer Workflow UI Overview page displayed
either in the browser view of the Process Development Perspective or in a separate browser window, depending on the setting
in the corresponding preference. This Process Start Overview web page shows all processes that can be started by clicking
on the link.

Also the Web Services are displayed on the Process Start Overview page. By clicking a Web Service Process link, the
corresponding WSDL is displayed.

Process Modeling

61

Figure 2.32. Start process on the Request Start element

Figure 2.33. Designer Workflow UI Overview Page

Tip

You can switch off the simulation of Process Start Events and Intermediate Process Events when you want to
simulate or test other parts of a projects. Just set the corresponding options in the preferences

Engine Actions

You are able to control the simulation and to influence the animation using the actions in the toolbar or the Axon.ivy menu.

javascript:executeCommand('org.eclipse.ui.window.preferences(preferencePageId=ch.ivyteam.ivy.designer.preferences.EnginePreferencePage')

Process Modeling

62

Figure 2.34. The Engine Sub-Menu

Starting the engine and show
overview page

Select the entry in the menu or the button in the toolbar to start the
Simulation Engine, open the Process Development Perspective and refresh the Process
Start Overview page.

Starting the engine Select the entry in the menu or the button in the toolbar to start the
Simulation Engine and refresh the Process Start Overview page but without opening
the Process Development Perspective.

Stopping the engine Select the entry in the menu or the button in the toolbar to stop the
Simulation Engine.

Adjust the engine animation speed Select the entry in the menu or the button in the toolbar to show the
slider to adjust the speed of the animation. This overwrites the corresponding setting
in the preferences.

Suppressing the engine animation Select the entry in the menu or the button in the toolbar to switch
the engine animation on and off. This overwrites the corresponding setting in the
preferences.

Content and Formatting Language Settings

Overview

This dialog allows to edit the content language and the formatting language. The language settings are used at design time
for displaying the Rich Dialogs in the Rich Dialog Editor. If option Use settings while simulating is checked the settings are
also used while simulating.

Process Modeling

63

Figure 2.35. Content and Formatting Language Settings Dialog

Accessibility

Press in the toolbar.

Settings

The following language settings can be configured:

Content Language The content language is used to select the values of content objects.

Formatting Language The formatting language is used when Objects are formatted using the format()
method.

Use settings while simulating If checked then the content and the formatting language settings will be used while
simulating. If not checked then the settings of the client OS (for RIA) or the browser
settings (for HTML) will be used.

How to use in IvyScript

To get or set the content or formatting language in IvyScript use ivy.session.contentLocale respectively
ivy.session.formattingLocale.

Find out more about Axon.ivy's scripting language here.

Breakpoints

A breakpoint is a marker that tells the simulation engine to pause the execution. It is then possible to inspect the execution
history, to view the values of internal variables and evaluate user defined expressions without being interfered by the running
execution. The execution must be resumed by the user explicitly over the functionality of the Debug View. You can see a list
of your breakpoints and edit them in the Breakpoint View.

Process Modeling

64

Process Element Breakpoints

A process element breakpoint is a breakpoint that can be set on a process element. The execution of the process will be
interrupted before the process element is executed.

Add / Remove a breakpoint

You can add process element breakpoints in a Process editor or User Dialog Logic editor window by using the popup menu.
Right-click on the process step on which you intend to set the breakpoint and go to the Breakpoint sub-menu.

Adding a conditional breakpoint allows you to define an expression in a input box which must evaluate to true in order to
suspend the execution. In the expression you have access to the in variable and all other variables in the context of the process
step. As you can see in the figure above, process element breakpoints are visualized in the Process editor as a small filled

dot at the border of the process step .

Data Class Attribute Value Change Breakpoints

A data class attribute value change breakpoint is a breakpoint that can be set on a data class attribute. The execution of
the process will be interrupted before the value of the process data attribute is changed. Data class attribute value change
breakpoints can be added or removed in the Data Class Editor or the Entity Class Editor. The current available variables and
the current debug context is available in the Variables View. The old and new value of the debugging field is displayed in
the variable debug.

Note

The breakpoint only breaks if the value of an attribute is changed by an IvyScript write attribute operation (e.g.
in.data.myField="Hello"). If the attribute is changed by a setter method then the breakpoint will not
break (e.g. in.data.setMyField("Hello")).

Debugger
The debugger provides a set of views and features to inspect the execution (including its history) of your processes and User
Dialogs. Akin to a debugger in an Integrated Development Environment (IDE) such as Eclipse, NetBeans or VisualStudio
it is possible to set breakpoints to pause an execution, to iterate through executions step-by-step and to examine the history
and the current state of the execution in depth.

Debug View

The Debug view shows in a tree per open project all the currently handled requests i.e. all processes under execution in the
simulation engine.

Process Modeling

65

Figure 2.36. The Debug view in action

For each request to the engine the current state (i.e. the currently executed process step) are shown and can be manipulated
individually with the following buttons on the toolbar:

Figure 2.37. Debugging Actions

Resume Resumes the execution of the selected process/request until the end of the process to the next breakpoint

Terminate Terminates the execution of the selected process/request

Step Into This can be used to step into a (callable) process element. The current step is executed and then execution
is suspended on the next step again.

Step Over This can be used to step over a (callable) process element. The current step is executed and then execution
is suspended on the next step in the current process.

Step Out This can be used to step out of the current process, the execution is suspended again on the caller process
element.

If you select a stack element then the process editor shows the process element that is executed at this stack element. Moreover,
the Variable view will display the current values of the process data at the process element of the selected stack element.

History View

In this view you see the values of your process data (the in variable) during all runs of the currently selected process element
in the process editor. The topmost tree entry shows the data of the first execution of the selected element during the first
request whereas the entry at the bottom corresponds to the most current execution.

Figure 2.38. The History view in action

The following buttons on the toolbar can be used to navigate to process elements and to configure the history:

Go to process element () Marks the process element in the process editor whose history is currently displayed.

Go to next process element () Shows the history of the next process element.

Go to previous process element () Shows the history of the previous process element.

Process Modeling

66

History view preferences () Opens the preference page with the settings for the history.

Note

In case of memory shortage during simulation or due to history settings process data snapshots may be discarded.
This is indicated by the message "history data no longer available".

Breakpoints View

This view lists all the breakpoint which are currently set and offers some functionality to edit and filter single breakpoints.

Figure 2.39. The Breakpoints view in action

You can configure and control the View with the toolbar and menu:

Remove Breakpoints () You can remove either the selected process(es) or all processes.

Show Breakpoints Supported by

Selected Target ()

Shows only the breakpoints in the list which are included in the process start under
execution.

Go to File for Breakpoint () Opens an editor with the file containing the breakpoint or sets the focus on the
corresponding editor window.

Skip all Breakpoints () If set, all breakpoints are skipped.

Tip

This is helpful when you need to debug only some executions of a process
steps. You can skip the breakpoints at the beginning and switch this button
off, when the execution reaches the part you are interested in.

Expand All / Collapse All () If you have grouped the breakpoints together, you can quickly expand or collapse the
whole tree

Link with Debug View () Links this view together with the Debug View.

Add Java Exception Breakpoint

()

Adds a breakpoint for a type of Java Exceptions, which will be used whenever this Java
Exception is thrown throughout the execution.

Warning

Use this feature only if you are familiar with the Java programming
language and its exception handling mechanism

Toolbar Menu () Here you can group the breakpoints according to some categories, select whether you
want to restrict the view on a specific working set and set whether you want to see fully
qualified names for breakpoints in Java code.

Variables View

This view shows a list of all variable in the context (or scope) of the currently executed process step. You are able to examine
the structure, the types and the values of variables and it is even possible to change the values of variables which have a

Process Modeling

67

simple data type (such as String, Number, Boolean, Time, Date or DateTime). The view is divided into a variable
tree showing the structure, value and type of each variable (including its members) and a detail pane that displays the values
for deeper examination.

Figure 2.40. The Variables View in action

Collapse All () Collapse the whole variable tree to its root items.

Toolbar Menu ()

Layout You can switch on and off the detail pane, set its orientation
(vertical or horizontal) and set whether and which columns
should be displayed.

Detail pane Setting for the size of the buffer for the detail pane, the higher
the longer values you can examine (e.g. very long strings) but
the more memory you use.

Wrap Text in Details Pane Wrap text in details pane when it does not fit in the available
space

Popup Menu

Select All Selects all elements in the list.

Copy Variables Copies all selected variables into the clipboard (e.g. for use in
the Expressions view).

Find ... Allows to find a specific variable with a filter string.

Change Value ... The values of primitive Java data types may be changed here.

Create Watch Expression Creates a new expression in the Expressions View.

Warning

Changing the value may cause exceptions or introduce undesired side effects with very weird behaviour in the
continuation of the execution. Please use this feature with precaution!

Process Modeling

68

Expressions View

In this view you can define expressions, evaluate them and examine their values (similar to the Variables view). In the
expression you can use all valid IvyScript operators and language elements and at a certain point of time, only variables which
are in the scope of the currently executed process step can be evaluated.

Figure 2.41. The Expressions View in action

Show Type Names () Shows the type names of the variables in the front of the variable.

Collapse All () Collapse the whole expression tree to its root items.

Remove Selected Expressions /

Remove All Expressions ()

You can remove either the selected or all expressions.

Toolbar Menu ()

Layout You can switch on and off the detail pane, set
its orientation (vertical or horizontal).

Detail pane Setting for the size of the buffer for the detail
pane, the higher the longer values you can
examine (e.g. very long strings) but the more
memory you use.

Wrap Text in Details Pane Wrap text in details pane when it does not fit in
the available space.

Popup Menu

Select All Selects all elements in the list.

Copy Expressions Copies all selected expressions and their state
into the clipboard.

Process Modeling

69

Find ... Allows to find a specific variable with a filter
string.

Add Watch Expression ... Adds a watch expression into the expression
view.

Reevaluate Watch Expression Computes the current value of the expression
(e.g. if expression reads data which was
manipulated by concurrent threads).

Disable / Enable Disables or enables the automatic evaluation of
expressions when changes occur.

Edit Watch Expression ... Edits the selected watch expression.

Runtime Log View

Overview

This section explains the Runtime Log view, and how it works.

The Runtime Log view displays a list of events. This events occur during the simulation. When you start the Axon.ivy process
engine, this log view is opened by default and all entries are cleared.

Figure 2.42. Runtime Log View: List of logged Events

Accessibility

Window > Show View > Runtime Log

Window > Show View > Other ... > Other... > Axon.ivy > Runtime Log

Columns

The following columns are displayed in the Runtime Log view:

First narrow column without name In this column an icon is displayed that symbolizes the type of logged event (info /
warning / error message)

Request The request (HTTP, ULC, etc. with its ID) is displayed in which the log message
occurred.

Project The name of the project the log event was logged in.

Element The identifier of the process element which logged the event.

Category The log category refers to the Axon.ivy part which has logged the event (e.g. user_code:
ivyScript by user; rich_dialog: at execution of RD; process: log from/during process
model execution).

Message The event message is displayed here.

Process Modeling

70

Logged Event Details

When you double click on a log entry, a detail window will appear.

Figure 2.43. Runtime Log View Event Details

The following fields are displayed in this window:

Time Time, when the event was logged.

Request The request (HTTP, ULC, etc. with its ID) in which the log message occurred.

Rich Dialog The Rich Dialog in which context the event was logged.

Tip

You can jump to this rich dialog using the Goto Rich Dialog button on the right left hand side

Severity Shows how serious the logged event is (debug, info, warning, or error).

Project The name of the project the log event was logged.

Category The log category refers to the Axon.ivy part which has logged the event (e.g. user_code: ivyScript by user;
rich_dialog: at execution of RD; process: log from/during process model execution).

Element The identifier of the process element which logged the event.

Message The log message is displayed here.

Stack If an exception was logged with the event, and it contains a stack trace (calling hierarchy), then it is
displayed here.

On the right hand side the following buttons are located:

 Previous event
Clicking on this button will open the previous event of the logged events list.

 Next event
Clicking on this button will open the next event of the logged events list.

Goto rich dialog
This button is available only if the log event contains Rich Dialog information. Clicking
on this button opens a new editor showing the Rich Dialog which that has logged the
event.

Process Modeling

71

Goto process element
If you click on this button a process is opened and the process element that has logged
the event is selected.

Copy event details to clipboard
If you click on this button all log event information are copied to clipboard.

Save Error Report
If you click on this button an error report that contains information about the error, the
designer machine and the current state of the Axon.ivy Designer.

How to log

This chapter describes how you can log to the runtime log.

Open any process elements that contain IvyScript (like: Step, Web Service, etc.) and type a script like the one you find in
the figure below:

Figure 2.44. IvyScript to log into Runtime Log

Find out more about Axon.ivy scripting language here.

Process Performance View

Overview

The Process Performance View displays process performance statistics. This allows to analyse the performance and to detect
long running and performance intensive process elements and processes. The view contains detailed information of each
executed process element.

Figure 2.45. The Process Performance View

Note

On the Axon.ivy Engine there is the possibility to dump out performance statistics to a comma separated value
file (*.csv). Check the Engine Guide for more information: Monitoring > Process Element Performance Statistic
and Analysis

Process Modeling

72

Accessibility

Window > Show View > Other... > Axon.ivy > Process Performance

Analyse the Performance Statistic

All time values are in milliseconds. The execution of some process elements are separated in two categories internal and
external.

Internal Category The internal category is used for the execution time in the process engine itself without the external
execution.

External Category The external category is used for execution time in external systems. In the table below the process
elements are listed which use the external category.

Process Element Internal Category External Category

Database Step Parameter-mapping, caching,
output-mapping and ivyScript
execution.

The execution of the SQL
statement on the database
server.

Web Service Call Step Parameter-mapping, caching,
output-mapping and ivyScript
execution.

The execution of the Web
Service on the web server.

E-Mail Step Parameter-mapping The interaction with the Mail-
Server.

Program Interface The execution of the defined
Java-Class.

Table 2.3. Process elements with usage of external category

For each executed process element one entry in the view is created. See the table below which information is available.

Name Description

Entry ID Entry ID, useful to order the entries by its execution

Process Path The path to the process.

Element ID The identifier of the process element.

Element Name The first line of the process element name (display name).

Element Type The type of the process element.

Total Time Total time [ms] of internal and external execution.

Int. Executions Total internal executions of the process element.

Total Int. Time Total internal time [ms] of process engine executions.

Min. Int. Time Minimum internal process engine execution time [ms].

Avg. Int. Time Average internal process engine execution time [ms].

Max. Int. Time Maximum internal process engine execution time [ms].

Ext. Executions Total external execution count.

Total Ext. Time Total external execution time [ms].

Min. Ext. Time Minimum external execution time [ms].

Avg. Ext. Time Average external execution time [ms].

Max. Ext. Time Maximum external execution time [ms].

Table 2.4. Column Description

Process Modeling

73

Case Maps

Introduction

Case Maps can be used to split a long running process into multiple short running processes. See: Adaptive Case Management:
Regaining the big picture.

The Case Map controls which processes are executed automatically in which order and which processes can be started
manually by users.

Case Map Wizard

Overview

The New Case Maps Wizard lets you create a new Case Map.

Accessibility

File > New > Case Map

Features

Figure 2.46. The New Case Map Wizard

Project Name Choose the project in which you want to create a new Case Map.

Namespace Select a process group where the new Case Map will be inserted. Select the <default> process group
to create a Case Map directly below the project's processes folder. You can click on the group folder
button to open the New Process Group Wizard, if you want to create a new group "on the fly". The process
groups are listed relative to the project's processes folder.

Name Enter the name of the Case Map that you want to create.

Case Map Editor

The Case map editor is the editor that is shown when you open a case map in the designer. Use it to create and edit Case Maps.
At first you typically want to name your case map and add new stages by clicking on the plus (+) symbol.

Process Modeling

74

Figure 2.47. Case Map Editor

Case Map Element Reference

Stage

A case map is divided into stages. Each stage defines a certain phase in the life of a business process. A stage is a container
for multiples processes that belong to each other in a logical order. Within a stage the processes are executed from top to
bottom. If the last process of a stage has finished the execution continues on the stage to the right. Besides processes a stage
can also contain Sidesteps, that are valid in the current stage. The actual stage of a Business Case is also displayed in the
Workflow UI with it's name and icon.

A business process can programmatically switch to another stage by using the case map API (ivy.casemap).

The position of a Stage in a case map can be changed via the menu on the stage.

Process Modeling

75

Figure 2.48. Case Map Element: Stage

Process

A process in the Case Map references to a process start of an Axon.ivy process. If the business process enters a stage, the first
process, which entry condition evaluates to true, will be started.

Processes and Sidesteps can be rearranged around by drag and drop.

Figure 2.49. Case Map Element: Process

Process Precondition

Preconditions can be set on a process and define whether a process should be skipped. The precondition on the first process
in the case map is not evaluated. If a precondition is not met, the execution continues on the next process. For script features
see “Case Map scripting”

Figure 2.50. Precondition symbol

Sidestep

Sidesteps are optionally executable processes. Sidesteps like processes belong to a stage. They can be started at any time
manually during the ongoing business process. A typical Sidestep could be a process which is used to involve a supervisor
to ask for clarification.

Process Modeling

76

Sidestep Precondition

Decides whether that Sidestep can be currently started or not. For script features see “Case Map scripting”

Figure 2.51. Sidestep Precondition symbol

Case Map scripting

Scripts within a Case Map can be written in ivyScript.

A simple Process Precondition could be implemented as follows:

businessCase.getCreatorUserName().equals("Bruno") && creditDossier.needsApproval

Available variables

Within Case Map scripts the running Business Case is always accessible trough the variable businessCase.

Any class that is annotated with @BusinessCaseData is accessible by its simple name (e.g. if the full-qualified name of
the class is com.axonivy.CreditDossier the simple name is: creditDossier). The variable value will be loaded
from the Business Data Repository.

Figure 2.52. Sample DataClass with @BusinessCaseData annotation

Case Map Animation

The execution of a Case Map can be followed in the Case Map Editor. As known from the BPM processes the currently
executing and already executed elements in the Case Map will be marked. It uses the simulation settings known from the
BPM processes.

Process Modeling

77

Figure 2.53. Animated Case Map Editor

Case Map Statistics (Preview)
The Case Map provides the ability to display different process metrics of a Case Map in an early version. The monitoring can
be enabled via the Case Map menu on the right-hand site. Currently the Case Map statistics only displays the metrics of the
actual linked process, metrics of other processes that might have been started from this process are not considered.

Figure 2.54. Process metrics

Tasks

The tasks statistics are based on the expiration dates of the Case Map tasks. Therefore, the task count is only based on tasks
with an expiration date. The tasks are divided into following three categories:

Process Modeling

78

On time Considers the average throughput time to calculate if the tasks are on time. A task is considered on time when
the expiry date of the task is more than half of the average throughput time away from the current time.

On risk Considers the average throughput time to calculate if the tasks are on risk. A task is considered on risk when the
expiry date of the task is the half of the average throughput time away from the current time.

Overdue The task count of expired tasks.

Throughput time

The average throughput time per task of this process is displayed.

Workflow execution of Case Map Processes

The execution of a process in a Case Map is the same as when it is executed as a standalone process. For each started instance
it will create a task and a case. You can configure the created case and task by using the Case and Task tab on the Request
Start inscription mask.

Responsible role

By default the responsible role that can work on the created task is the one configured on the Request tab of the Request
Start. If the Request Start is triggerable then also the information on the Trigger tab is considered and the task is assigned
to the responsible role or user configured on this tab. To automatically execute a process, configure the Request Start to be
triggerable and set the responsible role to SYSTEM.

Stage switching

When a stage change happens the Case Map does not cancel tasks thats were started in the stage before the switching happened.
This is mainly important if the stage switch was performed programmatically using the ivy.casemap API. The process
developer should consider to change the state (e.g. destroy) of existing tasks manually before switching to another stage
change.

Process Elements Reference
This chapter provides detailed explanations for the usage and configuration of all process element, for both business processes
and Rich Dialog logic.

Axon.ivy provides a lot of useful process elements that can be used to define processes and the Rich Dialog Logic. These
elements reside in the palette on the right edge of the Process editor and of the Rich Dialog editor. You can drag and drop the
elements on the editor to use them in a specific process flow. You then can connect two elements by clicking on the source
element, let the moused button pressed down, move the mouse cursor to the target element and finally release the mouse
button. Reconnecting or removal is only possible by using the corresponding entries in the popup menu.

Every process element can be configured with its inscription mask. Open this mask by double-clicking on the element, use
the popup-menu or press the i-key whenever the element is selected. The inscription mask is divided into multiple tabs and
the order of the tabs indicates the sequence of processing. For example in the figure below, the Output mapping (the second
tab in the middle) is performed before the code in the third tab is executed.

Process Modeling

79

Figure 2.55. An exemplary inscription mask

The icons on the tab indicate their state:

• the tab is empty

• the tab has been changed by the user (default assignments are not considered as user entries)

• the tab contains errors

Common Tabs
This section describes the most common tabs that are used on more than one element inscription mask.

Name Tab

This tab is included in the inscription mask of all process elements and contains the name and a description of the element.

Figure 2.56. The Name tab

Element Name Name of the element in the process.

The name will be displayed in the process editor. Various font format options can be chosen on the
popup menu of selected text.

Process Modeling

80

Tip

Give each element a name, always. This increases the overview and simplifies the
exchange of models between you and your colleagues. If you work in a team, the use
of naming conventions are strongly recommended.

Description Describes the function of the element.

This text appears as tool tip in the process editor whenever the mouse stays over the element.

Means/Documents A list with references to additional stuff that is related to this process step, i.e. documentation,
templates, example forms and many more.

Tip

In generated HTML reports, a link is inserted for these document references.

Output Tab
On this tab you can set all values in the output Data Class. By default the output variable is mapped directly to the input
variable, but the user can overwrite either the assignment of the whole output Data Class or only of single members thereof.

Note

In Axon.ivy input and output of process or Rich Dialog logic elements are always set to the corresponding data
class, i.e. in a Rich Dialog logic element it is the Rich Dialog Data Class and in a process element it is the project
Data Class (or the one which was assigned to the process).

Figure 2.57. The Output tab

Filter Box / Toolbar In the upper part you can set a string based filter with wild cards in the text box, set a filter to

only show rows with an assigned value (), move between the rows with an assigned value

, expand/collapse the list and set the visibility level ()

Output Tree Here you can see the whole structure of the output variable including each of its members
with the assigned values/expressions. You may use the Attribute Browser and the Function
Browser to construct the expressions.

Code Tab
The code tab is part of almost each inscription mask and allows the user to define the semantics (behaviour) of the
corresponding process element with the built-in Axon.ivy scripting language.

Process Modeling

81

Figure 2.58. The Code Tab

Code Editor You can write IvyScript code snippets in the part with yellow background. The editor supports
code completion and error highlighting. If the background color changes to red, the code contains
an error.

Tip

For more information about IvyScript, see IvyScript

Attribute Browser Here you have access to the local process data in the scope of the element such as the in-
and out-variables, the Rich Dialog panel (if this is inside the Rich Dialog logic) and other
parameters. Click here for more information.

Function Browser Here you have access to some of the most important mathematical functions and to the whole
environment of the process such as the request and response properties, the application the
process belongs to and many more. Click here for more information.

Data Class Browser Here you have access to all data classes in the scope of the process element. This includes the
built-in Ivy data types such as String, Number, DateTime or even List. Click here for
more information.

Panel Tab

Here it is possible to access and manipulate the Rich Dialog panel and its members.

Process Modeling

82

Figure 2.59. The Panel tab

Filter Box / Toolbar In the upper part you can filter the widgets and attributes by name using wild cards in the text

box, set a filter to display only rows with an assigned value (), move between rows with

an assigned value , expand/collapse the list and set the visibility level ().

Panel Tree In the tree you can expand the whole panel hierarchy and manipulate the values of its
members.

Data Cache Tab
Process activities that read data from an external system can cache values of previous executions in the memory and re-use
them on follow up executions. This is an optimization for external systems that execute expensive operations or have slow
response times.

For more information about this topic, please refer to the Data Caching section.

Figure 2.60. The Data Cache tab

Process Modeling

83

Caching Mode • Do not cache: Does not use the data caching mechanism at all, the element is executed normally. This
is the default setting for all elements.

• Cache: Uses the data caching mechanism to execute the element. First the whole data cache is searched
for the entry described below in the Group/Entry part. If found, the cached value is returned and the
execution of the element ends. If not found, the element is executed normally, but in the end the result
is stored in the data cache.

• Invalidate Cache: Explicitly invalidates the data cache entry specified in the Group/Entry part. Use
this when your element performs a write operation that changes data which is cached. The step is
executed normally, but in addition the specified data cache entry is invalidated.

Scope Cache entries depend from the active environment and are always bound to their scope.

• Session: the cache entry is linked to the currently logged in user (i.e. is specific for each user and is
invalidated when the user logs out).

• Environment: the cache entry is linked to current environment.

• Application: the cache entry is linked to the Application

Warning

Use caches sparingly and with precaution! If you cache results from process steps with huge
results (in terms of memory usage), your memory can fill up very fast. This can even get
worse if you frequently use the Session scope and the result is cached multiple times (once
for each session i.e. user)

Group • Name: Cache entries need a group name. Several entries can share the same group in order to invalidate
multiple entries at the same time.

• Lifetime: Groups can be invalidated either on request (see Caching Mode: Invalidate Cache), at a
specific time of the day or after a configurable period of time. Invalidating a group always means to
remove all its entries from the cache.

Entry • Name: Must be unique within the group but you are allowed to have multiple entries with the same
name in different groups. Use always the same entry names (as well for the group) if you want to use
the same data cache entry in multiple process steps.

• Lifetime: Single cache entries can be invalidated either on request (see Caching Mode: Invalidate
Cache), at a specific time of the day or after a configurable period of time.

Start

 The Start (Request Start) element is located in the Event & Gateway drawer of the Process editor palette.

Element Details
The Request Start element is the start point of a workflow. A workflow contains one case and at least one task. Each start
of a Request Start creates a new case and task.

There are two ways to start a new workflow:

• Request

Process Modeling

84

Most workflows are started with a HTTP request. The start Links can be found on the Process Start Overview HTML page
and can be placed on an external web sites or as shortcut on the desktop.

The public API provides also a ways to get a list of all request starts for custom start lists or own implemented start
mechanism:

ivy.session.getStartableProcessStarts()

The HTTP request start can be configured on the Request Tab

• Triggered

The second way to start a new workflow is by a Trigger Element. On call, it creates a new case and a new task to the
Request Start with the defined configurations (and parameters). This offers a simple way to create several workflows inside
a other workflow.

The trigger start can be configured on the Trigger Tab

These two start types could be enabled or disabled separately.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Start Tab

The start tab defines the name and the parameters to start the process. The signature is a definition of the name with the
parameter types and its order. Elements like Call Sub or Trigger referenced to this signature.

Signature Displays the current signature. Namespaces of the parameter types are not displayed,
but they are still a part of the signature, that identifies a start uniquely.

Name Signature name is case sensitive and can only contain letters (a-Z), numbers (0-9) and
underscores (_).

Definition of input parameters Defines the input parameter of the interface. The type of the parameters and its order
is used for the signature. Changing the order or the type, changes also the signature.
All referenced elements has to be updated.

Mapping of input parameters to
process data

This section is to mapping the incoming parameters to the internal process data. The
parameters are available as fields on a param variable.

Note

The reason you have to assign the incoming parameters to local data is to keep the internal implementation
independent from the signature declaration. The mapping of parameters serves as a flexible adapter mechanism.
The implementation can be changed (rename data, use different data types, etc.) without changing the signature.
That way none of the clients of the Process have to be changed as long as only the implementation changes
and the signature stays.

Note

Only the defined input parameter on the signature can be assigned to the process data. The internal process data
is hidden and encapsulated from the environment. This makes it impossible to inject unintended, insecure data
into the process data.

Process Modeling

85

Note

To submit parameters with a HTTP-Request you can simply add them to the URL.

If you have for example defined a parameter named myParameter in the signature, append ?
myParameter=hallo to the URL to pass the value hallo to the parameter myParameter.

If you want to pass values for multiple parameters the following parameter need an & instead of an ?. For
example: ?param1=value1¶m2=value2¶m3=value3

Tip

You may already specify the type of the parameter here by adding a colon ':' to the parameter name, followed
by desired type (e.g. myDateParameter:Date).

Request Tab

This tab contains the configuration for the HTTP-Request start. Name and description which is displayed on the start list. The
required permissions to start the process, and the workflow mode.

Enablement If Yes, this start can be started with a HTTP-request/ -link is checked, the HTTP request
mechanism for this start element is enabled. Otherwise it is not possible to start the
request start with a HTTP request.

Start Link HREF (.ivp) Contains the name of the Process Start link. Notice that this link always has to end on
.ivp. This is required for proper association of the request by the web server. Important:
this name has to be unique within its process.

Show in Start List Defines whether this process should appear in the start list of the Process Start
Overview HTML page or not.

Name Defines the display name of the process start in the start list.

Description Sets a description of the process start. It is displayed in the start list of the Process Start
Overview HTML page.

Responsible Role Users which want to start the process must be assigned to this role.

Tip

In the Designer you can create test users and assign them the role to
test this element, on the Axon.ivy Engine you must create the real users
separately (roles can be imported from the designer).

Only Wf Users Limits the process to users that are registered in the Axon.ivy Engine as users. If the
box has not been checked also anonymous users (which own the Everybody role by
default) may start the process.

Role Violation error The selected exception element is thrown when the user lacks the required role. The
error can be handled by a catching “Error Start”.

Persist task on creation If selected, the case and task are directly persistent on request start. The Case state
will be RUNNING instantly (skipping the state CREATED) and the Task state will be
RESUMED (skipping the state CREATED). The task could also be reset after the Start
Request and the next Task Switch or Process End.

Process Modeling

86

This option only available when the option Only WF User is activated.

Note

If the option is selected, the task could be reseted in the process (with
task.reset()). This will reset the process data and the current user
got the task to his task list.

Note

When a session timeout occurs, task.reset() is called automatically
on the task. Thereby the user has the task again in his task list.

Tip

Usually only processes including at least one Task Switch element has
this option selected. Because per default a new task is in state CREATED
until the task become persisted. If the option is selected, the task get
directly into the state RESUMED. With this behaviour is now possible to
distinguish tasks which have a Task Switch element in their process and
others without one. This helps to separate tasks in the task overview from
workflow starts (with different steps) and simple process starts (which
e.g. only outputs some informations).

Trigger Tab

This tab holds definitions for starting this workflow with a Trigger Element.

Enablement If Yes, this start can be started with a trigger element is checked, the trigger mechanism
for this start element is enabled. Otherwise it is not possible to choose the Request Start
element in a Trigger Element.

Note

When an already related Trigger Element links to a disabled start, this will
not prohibit the execution at runtime. An error is logged to the log file and
the process starts with its defined configuration.

Process Modeling

87

Responsible Role / User Defines the role or user required to carry out the task created with the Trigger Element.

Use Role from Attr. or User from Attr., if the role or user must be set dynamically during
process execution. For example from a parameter set by the Trigger Element.

Use Role, if you know the responsible role when editing the element.

The role SYSTEM means that no human intervention is required. The system executes
the task automatically.

The role CREATOR means that the user who has started the current case is responsible
for the task created by the Trigger Element.

Delay (blocking period) The task can be blocked before a user can work on it. This ivyScript expression defines
the Duration the task is blocked.

Case Define whether the triggered case should be attached to the same “Business Case” as
the triggering case.

Task Tab

This tab defines information relevant to the task. Only tasks created with the Trigger Element (see Trigger Tab) will appear in
the task list as suspended tasks. Tasks started with a HTTP request (see Request Tab) normally do not appear in the task list.

Entry in Task List Defines the name and description of the task that appear in the task list of the assigned role or
user.

Priority Here you select the priority of the task. In the task list you can filter the tasks according the
priority.

Expiry An ivyScript expression defines the Duration until the task will expire. If that happens the
escalation procedure defined by the following parameters is executed.

• Exception: Starts an exception process if defined. >> Ignore Exception will not start an
exception process.

• Responsible Role / User after expiry: Defines the Role / User to reassign the task to.

• Priority after expiry: Defines the new Priority of the task after it has expired.

Note

A task created with a HTTP request (see Request Tab) is executed immediately.
Defining Expiry Timeout makes only sense in combination when starting with a
Trigger Element (see Trigger Tab)

Tab Task - Business

This tab allows to set additional information to categorize the task created. The values set on this tab are only informational
and have no effect on how this task is treated by Axon.ivy.

Business calendar

You can set the name of the business calendar that should be used for this task. In the context of this task ivy.cal will
return this business calendar regardless of what you've set for the case or environment.

For more information about business calendar administration see the engine guide.

Process Modeling

88

For more information about business calendar usage see the Public API of
ch.ivyteam.ivy.application.calendar.IDefaultBusinessCalendar.

Tab Task - Custom fields

This tab allows to set additional information for the task created. The values set on this tab are only informational and have
no effect on how this task is treated by Axon.ivy.

Case Tab

On this tab you can configure the Case created by this Start Request. See “Case Tab” in the Task Switch Gateway element.

Program Start

 The Program Start element is located in the Event & Gateway drawer of the process editor palette.

Element Details
The program start element allows to start a process by a trigger from embedded external Java code. This opens
a possibility to integrate an Axon.ivy application into other applications and systems. The program start element
will instantiate a Java class that must implement the IProcessStartEventBean interface. The Java class can
then start the process by calling the method fireProcessStartEventRequest on the Axon.ivy runtime engine
IProcessStartEventBeanRuntime. The common way to implement a Start Event Bean is to extend the abstract base
class AbstractProcessStartEventBean.The interface also includes an inner editor class to parametrize the bean.
You will find the documentation of the interfaces and abstract class in the Java Doc of the Axon.ivy Public API.

How Process Start Event Beans work on an Axon.ivy Engine Enterprise Edition

An Axon.ivy Engine Enterprise Edition consists of multiple engine instances (nodes) that are running on different
machines.

Normally process start event beans are instantiated on every node but only started on the master node. This guarantees
that for each Program Start process element only one bean is running, no matter what the total number of nodes in
the Engine Enterprise Edition is.

However, if you need your process start event bean to be started on all cluster nodes, you may instruct the engine
to do so. Just have your bean class implement the (empty) marker interface IMultiNodeCapable and the above
restriction will no longer apply.

Please be aware of the fact that having multiple running instances of the same bean may lead to race conditions.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Tab Start

On this tab you define the Java class to execute.

../PublicAPI/ch/ivyteam/ivy/process/eventstart/IProcessStartEventBean.html
../PublicAPI/ch/ivyteam/ivy/process/eventstart/IProcessStartEventBeanRuntime.html
../PublicAPI/ch/ivyteam/ivy/process/eventstart/AbstractProcessStartEventBean.html
../PublicAPI/ch/ivyteam/ivy/process/beans/IMultiNodeCapable.html

Process Modeling

89

Figure 2.61. The Start tab

Java Class to execute Full qualified name of the Java class that implements the IProcessStartEventBean

interface. Use the New Bean Class Wizard () to create a new Java source file with an
example implementation of the bean class.

Responsible role Defines the role that is required to be able to start a process. The bean will set up
an authorised session that calls the fireProcessStartEventRequest() from the
eventRuntime to trigger a process.

Tab Editor

This tab displays the editor, that can be integrated in the external Java bean of the process element. The editor is
implemented as an inner public static class of the Java bean class and must have the name Editor. Additionally the
editor class must implement the IProcessExtensionConfigurationEditorEx interface. The common way to
implement the editor class is to extend the abstract base class AbstractProcessExtensionConfigurationEditor
and to override the methods createEditorPanelContent, loadUiDataFromConfiguration and
saveUiDataToConfiguration. The method createEditorPanelContent can be used to build
the UI components of the editor. You can add any AWT/Swing component to the given
editorPanel parameter. With the given editorEnvironment parameter, which is of the type
IProcessExtensionConfigurationEditorEnvironment, you can create text fields that support ivyScript and
has smart buttons which provide access to the process data, environment functions and Java classes.

Here is an example of such an editor:

As you can see, the editor provides you access to any process relevant data, which can be used by your own process elements.
For instance, you can easily transfer process data to your legacy system.

The following part shows the implementation of the editor shown above. As mentioned above Axon.ivy
provides the IIvyScriptEditor which represents a text field with ivyScript support and smart buttons. Inside
createEditorPanelContent use the method createIvyScriptEditor from the editorEnvironment
parameter to create an instance of such an editor. Use the loadUiDataFromConfiguration method to
read the bean configuration and set them to the UI components. Inside this method you can use the methods
getBeanConfiguration or getBeanConfigurationProperty to read the bean configuration. Use the method
saveUiDataToConfiguration to save the data in the UI components to the bean configuration. Inside this method
you can use the methods setBeanConfiguration or setBeanConfigurationProperty to save the bean
configuration.

../PublicAPI/ch/ivyteam/ivy/process/eventstart/IProcessStartEventBean.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractProcessExtensionConfigurationEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IProcessExtensionConfigurationEditorEnvironment.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html

Process Modeling

90

 public static class Editor extends AbstractProcessExtensionConfigurationEditor
 {
 private IIvyScriptEditor editorUser;
 private IIvyScriptEditor editorEventTyp;
 private IIvyScriptEditor editorLinkId;
 private IIvyScriptEditor editorFieldValue;

 @Override
 protected void createEditorPanelContent(Container editorPanel,
 IProcessExtensionConfigurationEditorEnvironment editorEnvironment)
 {
 editorPanel.setLayout(new GridLayout(4,2));
 editorUser = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorEventTyp = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorLinkId = editorEnvironment.createIvyScriptEditor(null, null, "String");
 editorFieldValue = editorEnvironment.createIvyScriptEditor(null, null);

 editorPanel.add(new JLabel("User"));
 editorPanel.add(editorUser.getComponent());
 editorPanel.add(new JLabel("Event Typ"));
 editorPanel.add(editorEventTyp.getComponent());
 editorPanel.add(new JLabel("Link-Id"));
 editorPanel.add(editorLinkId.getComponent());
 editorPanel.add(new JLabel("Feldwert"));
 editorPanel.add(editorFieldValue.getComponent());
 }

 @Override
 protected void loadUiDataFromConfiguration()
 {
 editorUser.setText(getBeanConfigurationProperty("User"));
 editorEventTyp.setText(getBeanConfigurationProperty("EventTyp"));
 editorLinkId.setText(getBeanConfigurationProperty("LinkId"));
 editorFieldValue.setText(getBeanConfigurationProperty("Feldwert"));
 }

 @Override
 protected boolean saveUiDataToConfiguration()
 {
 setBeanConfigurationProperty("User", editorUser.getText());
 setBeanConfigurationProperty("EventTyp", editorEventTyp.getText());
 setBeanConfigurationProperty("LinkId", editorLinkId.getText());
 setBeanConfigurationProperty("Feldwert", editorFieldValue.getText());
 return true;
 }
 }

At runtime you have to evaluate the IvyScript the user have entered into the ivy script editors. If you implement for example
the AbstractUserProcessExtension class there is a perform method which is executed at runtime. At this point you
want to access the configured data in the editor. The following code snippet show how you can evaluate the value of an
IIvyScriptEditor. If you use the IIvyScriptEditor you only get the value by calling the executeIvyScript
method of the AbstractUserProcessExtension.

 public CompositeObject perform(IRequestId requestId, CompositeObject in,
 IIvyScriptContext context) throws Exception
 {
 IIvyScriptContext ownContext;
 CompositeObject out;
 out = in.clone();
 ownContext = createOwnContext(context);

 String eventtyp = "";
 String linkId = "";
 String fieldValue = "";

../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html

Process Modeling

91

 String user= "";

 user = (String)executeIvyScript(ownContext, getConfigurationProperty("User"));
 eventtyp = (String)executeIvyScript(ownContext, getConfigurationProperty("Event Typ"));
 linkId = (String)executeIvyScript(ownContext, getConfigurationProperty("Link-Id"));
 fieldValue = (String)executeIvyScript(ownContext, getConfigurationProperty("Feldwert"));

 // add your call here

 return out;
 }

Error Boundary Event

 The Error Boundary Event can be attached to any activity by using its context menu.

Element Details
The execution of an activity can be aborted with an error. The execution is then redirected to this Error Boundary Event
element and continued from there. Within the follow up flow the process can handle the error by executing compensation
steps or user activities.

See the Error Handling concept for sample use cases.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Error Tab

On this tab you can configure the Error Code that the Boundary Event will catch.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

Additionally to the regular variables of the Output Tab you have the following variable available:

error References the occurred BpmError. Gives access to the occurred Error Code, Cause and CallStack.

../PublicAPI/ch/ivyteam/ivy/bpm/error/BpmError.html

Process Modeling

92

Error Start

 The Error Start Event element is located in the Event & Gateway drawer of the process editor palette.

Element Details
The execution of a process element can be aborted with an error. The execution can continue at an Error Start Event which
handles the occurred error. Within the follow up flow the process can handle the error by executing compensation steps or
user activities.

See the Error Handling concept for sample use cases.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Error Tab

On this tab you can configure the Error Code that the Error Start Event will catch.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

Additionally to the regular variables of the Output Tab you have the following variable available:

error References the occurred BpmError. Gives access to the occurred Error Code, Cause and CallStack.

Signal Boundary Event

 The Signal Boundary Event can be attached to a User Task by using its context menu.

../PublicAPI/ch/ivyteam/ivy/bpm/error/BpmError.html

Process Modeling

93

Element Details
A Signal Boundary Event destroys an open task of a user if a signal code is received that matches the inscribed pattern.

See the Signal concept for sample use cases.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Signal Tab

On this tab you configure the pattern that the Boundary Event will listen to.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

Additionally to the regular variables of the Output Tab you have the following variable available:

signal Gives access to the signal event.

Signal Start

 The Signal Start Event element is located in the Event & Gateway drawer of the process editor palette.

Element Details
The Signal Start Event listens to a signal. It starts a new process when a signal with a matching signal code has been received.

See the Signal concept for sample use cases.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Process Modeling

94

Signal Tab

On this tab you configure the Signal Code that the Signal Start Event will listen to.

Case Define whether the triggered case should be attached to the same “Business Case” as the signaling case.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

Additionally to the regular variables of the Output Tab you have the following variable available:

signal Gives access to the signal event.

Alternative

The Alternative Gateway element is located in the Event & Gateway drawer of the process editor palette.

Element Details

An Alternative is a switch that connects the process flow to one of the exits of the element depending on the evaluation of
the exit conditions. So, you can use this element to perform business rules (in the form of if - else if - else decisions) or to
build loops in the process flow.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Process Modeling

95

Tab Condition>

Figure 2.62. The Condition tab

Conditions Each row in this table is assigned to an exit of this element. In the column Condition boolean expressions
must be entered. The conditions are evaluated from the top to the bottom and the exit of the first one that
evaluates to true is chosen, i.e. the process will proceed by the path connected to this exit.

Split

The Split Gateway element is located in the Event & Gateway drawer of the process editor palette.

Element Details
This allows you to model parallel process paths. The element may split one process path into a number of paths that are
executed concurrently. The input process data is copied to all the parallel executions but can be manipulated in each path
individually.

Note

Use this element always together with the Join element.

Tip

Use the split and the join element to execute parallel database or web service requests.

Warning

Do not put any user interaction (Rich Dialog, HTML Page) or task element within a slitted process path.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Process Modeling

96

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

For each outgoing connection you have a separate outX object available which carries the data of the Xth output.
Hover with the mouse over the outgoing connections of the element to see which output connection corresponds
to which variable.

Code Tab

On this tab you can execute any IvyScript, e.g. define output data of this element. See code tab for a more detailed description.

Tip

The entered code will be executed after the execution of the output tab. Although this may seem a bit counter-
intuitive at first, you should simply regard the code tab as an alternative way of defining output data. The general
recommendation is to use the output table to define simple assignments and the code tab if more extensive
scripting is needed to calculate data.

Join

The Join Gateway element is located in the Event & Gateway drawer of the process editor palette.

Element Details
This element synchronizes and joins a parallel execution of process paths together. The output of each incoming path is copied
into the element and can be used to define its output.

Note

This elements waits until all of the parallel incoming process paths have finished and reached this element.

Tip

Use the Split element to create parallel process paths.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Process Modeling

97

Note

For each incoming connection you have a separate inX object available which carries the data of the Xth input.
Hover with the mouse over the incoming connections of the element to see which input connection corresponds
to which variable.

Code Tab

On this tab you can execute any IvyScript, e.g. define output data of this element. See Code Tab for a more detailed description.

Tip

The entered code will be executed after the execution of the output tab. Although this may seem a bit counter-
intuitive at first, you should simply regard the code tab as an alternative way of defining output data. The general
recommendation is to use the output table to define simple assignments and the code tab if more extensive
scripting is needed to calculate data.

Task Switch Gateway

 The Task Switch Gateway element is located in the Event & Gateway drawer of the process editor palette.

Element Details
With the task switch element a process is segmented into tasks. It interrupts the execution of a process and allows another
user to proceed. The actual process state is stored in the system database. A role or user is assigned that is able to pick up
and start the task.

When the role SYSTEM has been chosen the process is executed by the system, without manual intervention by a user.

Note

If any error occurs during the execution of a task that is executed by the system the task is rolled back and its
state set to error. After a certain time the task is resumed and the system tries again to execute it.

The duration until a task with state error is resumed depends on the times the task had failed before (1, 2, 4,
8 minutes, ... up to 23 hours).

This is a default behaviour. To change it consult the documentation of
ch.ivyteam.ivy.workflow.SystemTaskFailureBehaviour

Warning

The Task Switch Gateway element can have several input and output arcs and acts as an AND-Gateway. It
synchronizes all incoming tasks - it waits until all incoming tasks have been completed.

For each outgoing arc the Task Switch Gateway element creates a parallel task.

Warning

The process state that is stored to the system database contains all process data values that are stored in persistent
fields. Values of non persistent fields are not stored to the system database and are therefore not initialized in
the process data of the created tasks.

../PublicAPI/ch/ivyteam/ivy/workflow/SystemTaskFailureBehaviour.html

Process Modeling

98

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

For each incoming connection you have a separate inX object available which carries the data of the Xth input.
Hover with the mouse over the incoming connections of the element to learn which input connection corresponds
to which variable.

Task Tab

This tab defines the parameters for the tasks created by the Task Switch.

Defines the name, the description and category of the task that appear in the task list of the addressed role or user.

Tip

It is recommended practice to define and reference the text from the CMS. Look at the workflow concept for
some more information about categorization.

Responsible Role / User Defines the role or user required to carry out the task.

Use Role from Attr. or User from Attr., if the role or user must be set dynamically during
process execution. For example from a process-attribute which holds the name of a role
or user.

Use Role, if you know the responsible role when editing the element.

The role SYSTEM means that no human intervention is required. The system executes
the task automatically.

The role SELFx (SELF1, SELF2, ...) means that the same user that has finished the task
on entry x is responsible for the task.

The role CREATOR means that the user who has started the current case is responsible
for the task.

Normally a user interaction ends at a Task Switch element. It will be redirected to the
task list or an end page is shown. If Skip tasklist is activated for a task the user interaction
may not end at the Task Switch element. It is automatically redirected to this new task
marked with Skip tasklist. But only if it is allowed to work on the task and the Task
Switch is not waiting for any other tasks to finish.

Only one task of a Task Switch element can activate Skip tasklist.

Priority Here you select the priority of the task. In the task list you can filter the tasks according
the priority.

Process Modeling

99

Delay The task can be blocked before a user can work on it. This ivyScript expression defines
the Duration the task is blocked.

Expiry An ivyScript expression defines the Duration until the task will expire. If that happens
the escalation procedure defined by the following parameters is executed.

• Exception: Starts an exception process if defined. >> Ignore Exception will not start
an exception process.

• Responsible Role / User after Expiry: Defines the Role / User to reassign the task to.

• Priority after expiry: Defines the new Priority of the task after it has expired.

Note

If a Delay is defined, the expiry timeout begins after the Delay.

Note

A user can be informed by mail if a new task for him was created. This feature is useful for users that only
occasionally participate in workflows. On the other hand a user who participate often with the workflow may
find daily summary mails useful. User mail notification can be configured on the Axon.ivy Engine in the Engine
Administration UI or in the Workflow UI applications (For more information read the chapter User and Roles
in the Axon.ivy Engine Guide).

Custom fields Tab

This Tab allows to set additional information for the task created. The values set on this tab are only informational and have
no effect on how this task is treated by Axon.ivy.

Business Information Tab

This Tab allows to set additional information to categorize the task created. The values set on this tab are only informational
and have no effect on how this task is treated by Axon.ivy.

Business calendar

You can set the name of the business calendar that should be used for this task. In the context of this task ivy.cal will
return this business calendar regardless of what you've set for the case.

For more information about business calendar administration see the engine guide.

For more information about business calendar usage see the Public API of
ch.ivyteam.ivy.application.calendar.IDefaultBusinessCalendar.

Case Tab

Every time a process is started a case is created. This tab allows you to define additional information for the cases. The
information defined on this tab has no effect how Axon.ivy treats the cases. But they can be accessed through the Public API,
which allows you to use them for example to filter the task list.

You can define the name, the description and the catgegory for the corresponding case.

Note

Look at the workflow concept for some more information about categorization.

Process Modeling

100

Figure 2.63. Custom Fields Tab

Custom Fields Tab

Here you can set the values for at most 5 user defined fields for each of the three data types String, Number and DateTime.
You can reuse these fields in IvyScript over its API.

Business Information Tab

Warning

This feature is deprecated. This tab only appears if you activate it in Deprecation Preferences or if there are
already values inscribed on this tab. Instead use Business Data to define custom fields, which are searchable.

On this tab it is possible to edit further information about the process such as contact and business data.

Process Modeling

101

Figure 2.64. Business Information Tab

Main Contact Here you can set the information about the company your process deals with.

Process Modeling

102

Correspondent Contact Here you can set the information about the contact person in the company your process
deals with.

Business Object Here you can set the information about the business object your process deals with.

Other You can set here additional information about time constraint and further things.

Business calendar You can set the name of the business calendar that should be used for this case. In the context
of this case ivy.cal will return this business calendar instead of the default business
calendar. It is also possible to set a business calendar for a task.

For more information about business calendar administration see the engine guide.

For more information about business calendar usage see the Public API of
ch.ivyteam.ivy.application.calendar.IDefaultBusinessCalendar.

Tags Tab (Deprecated)

Warning

This feature is deprecated. This tab only appears if you activate it in Deprecation Preferences or if there are
already values inscribed on this tab. Instead use the category field to categorize your cases.

Here you can structure processes in more depth and categorize them into a user-defined hierarchy. These categorization
attributes may be accessed later over an API to filter and structure the task overview of users. The structure always consists of 4
levels, the process category, the process, the process type and process sub type, e.g. myProcessCategory/myProcess/
myProcessType/myProcessSubtype.

Tip

Create your specific hierarchy in the CMS so you can ensure its consistent use.

Process Modeling

103

Figure 2.65. Tags Tab

Process Category Sets the category code and name of the category this process belongs to.

Process Sets the process code and name.

Type Sets the process type code and name.

Sub Type Sets the sub type code and name of this process.

Note

The code is always used for internal reference (caching, searching, sorting and the like) and never shown to the
actual user. Therefore, the codes should be unique within its level. The name on the other side is human-readable
and always shown to the user when the element is referenced.

Process Modeling

104

End Page Tab

This Tab defines the page, which will be displayed in the web browser for each task which ends at this Task Switch Element.

If no page is defined the task list will be shown.

If no task is created because skip task list is enabled (see Task Tab) the case will continue without displaying a page or the
task list.

Dialog Page Pages can be referenced from the content management system or the web content directory. The wizard
allows you to create, select or edit pages.

Please refer to Creating and Editing HTML Pages in the HTML chapter for a more thorough explanation
of this tab section.

Task Switch Event

The Task Switch Event element is located in the Event & Gateway drawer of the process editor palette.

Element Details
The Task Switch Event element has quite the same function than the Task Switch Gateway element. The different is, that a
Task Switch Event element could only have one input and one output, instead of multiple as the parallel Task Switch Gateway.
The usage of this simplified element is to have a more BPMN conform element.

See Task Switch Gateway for a more detailed description.

Wait Program Intermediate Event

 The Wait Program Intermediate Event element is located in the Event & Gateway drawer of the process editor
palette.

Element Details
This element is one of Axon.ivy facilities to integrate custom-made software, legacy systems, proprietary applications or
any other external system through an Axon.ivy Java interface. At an Intermediate Event element the process execution is
interrupted and waits for an external event to occur. Technically spoken the current task will be ended and a new system task
is created that waits for the intermediate event. If the intermediate event is fired the new task and therefore the process after
the intermediate event will be executed.

You provide a listener for the external event by implementing a Java class that implements the
IProcessIntermediateEventBean interface. The Wait Program Intermediate Event Element instantiates the Java
class and can then trigger the intermediate event by calling the method fireProcessIntermediateEventEx on
the Axon.ivy runtime engine IProcessIntermediateEventBeanRuntime. The common way to implement an
Intermediate Event bean is to extend the abstract base class AbstractProcessIntermediateEventBean. The
interface also includes an inner editor class to parametrize the bean. You will find the documentation of the interface and the
abstract class in the Java Doc of the Axon.ivy Public API.

../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/IProcessIntermediateEventBean.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/IProcessIntermediateEventBeanRuntime.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/AbstractProcessIntermediateEventBean.html

Process Modeling

105

How Process Intermediate Event Beans work on an Axon.ivy Engine Enterprise Edition

An Axon.ivy Engine Enterprise Edition consists of multiple engine instances (nodes) that are running on different
machines.

Normally process intermediate event beans are instantiated on every node but only started on the master node. This
guarantees that for each Intermediate Event process element only one bean is running, no matter what the total number
of nodes in the Engine Enterprise Edition is.

However, if you need your intermediate event bean to be started on all cluster nodes, you may instruct the server
to do so. Just have your bean class implement the (empty) marker interface IMultiNodeCapable and the above
restriction will no longer apply.

Please be aware of the fact that having multiple running instances of the same bean may lead to race conditions.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Event Tab

On this tab you define the Java class that the IntermediateEvent should instantiate, the identifier of the event to wait for and
the timeout behaviour.

Java Class to execute Fully qualified name of the Java class that implements the
IProcessIntermediateEventBean interface. Use the New Bean Class Wizard

() to create a new Java source file with an example implementation of the bean class.

Event ID Because multiple cases (process instances) can wait on the same intermediate event you
must specify which event belongs to which waiting case. Here you specify the identifier of
the event the current case should wait for.

Warning

The event identifier as a String must be unique. Do not use a static
string like "myID". A good practice is to integrate the case identifier
(ivy.case.getIdentifier()) into the event id.

Timeout Here you can specify a time (Duration) how long the current case should wait for an
intermediate event and what should happen if no event has been received after this time.

../PublicAPI/ch/ivyteam/ivy/process/beans/IMultiNodeCapable.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/IProcessIntermediateEventBean.html

Process Modeling

106

You can optionally start an exception process, delete the waiting task or continue the waiting
task without receiving an intermediate event.

Tab Editor

This tab displays the editor, that can be integrated in the external Java bean of the process element. The editor is
implemented as an inner public static class of the Java bean class and must have the name Editor. Additionally the
editor class must implement the IProcessExtensionConfigurationEditorEx interface. The common way to
implement the editor class is to extend the abstract base class AbstractProcessExtensionConfigurationEditor
and to override the methods createEditorPanelContent, loadUiDataFromConfiguration and
saveUiDataToConfiguration. The method createEditorPanelContent can be used to build
the UI components of the editor. You can add any AWT/Swing component to the given
editorPanel parameter. With the given editorEnvironment parameter, which is of the type
IProcessExtensionConfigurationEditorEnvironment, you can create text fields that support ivyScript and
has smart buttons which provide access to the process data, environment functions and Java classes.

Here is an example of such an editor:

As you can see, the editor provides you access to any process relevant data, which can be used by your own process elements.
For instance, you can easily transfer process data to your legacy system.

The following part shows the implementation of the editor shown above. As mentioned above Axon.ivy
provides the IIvyScriptEditor which represents a text field with ivyScript support and smart buttons. Inside
createEditorPanelContent use the method createIvyScriptEditor from the editorEnvironment
parameter to create an instance of such an editor. Use the loadUiDataFromConfiguration method to
read the bean configuration and set them to the UI components. Inside this method you can use the methods
getBeanConfiguration or getBeanConfigurationProperty to read the bean configuration. Use the method
saveUiDataToConfiguration to save the data in the UI components to the bean configuration. Inside this method
you can use the methods setBeanConfiguration or setBeanConfigurationProperty to save the bean
configuration.

 public static class Editor extends AbstractProcessExtensionConfigurationEditor
 {
 private IIvyScriptEditor editorUser;
 private IIvyScriptEditor editorEventTyp;
 private IIvyScriptEditor editorLinkId;
 private IIvyScriptEditor editorFieldValue;

 @Override
 protected void createEditorPanelContent(Container editorPanel,
 IProcessExtensionConfigurationEditorEnvironment editorEnvironment)
 {
 editorPanel.setLayout(new GridLayout(4,2));
 editorUser = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorEventTyp = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorLinkId = editorEnvironment.createIvyScriptEditor(null, null, "String");
 editorFieldValue = editorEnvironment.createIvyScriptEditor(null, null);

../PublicAPI/ch/ivyteam/ivy/process/extension/IUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractProcessExtensionConfigurationEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IProcessExtensionConfigurationEditorEnvironment.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html

Process Modeling

107

 editorPanel.add(new JLabel("User"));
 editorPanel.add(editorUser.getComponent());
 editorPanel.add(new JLabel("Event Typ"));
 editorPanel.add(editorEventTyp.getComponent());
 editorPanel.add(new JLabel("Link-Id"));
 editorPanel.add(editorLinkId.getComponent());
 editorPanel.add(new JLabel("Feldwert"));
 editorPanel.add(editorFieldValue.getComponent());
 }

 @Override
 protected void loadUiDataFromConfiguration()
 {
 editorUser.setText(getBeanConfigurationProperty("User"));
 editorEventTyp.setText(getBeanConfigurationProperty("EventTyp"));
 editorLinkId.setText(getBeanConfigurationProperty("LinkId"));
 editorFieldValue.setText(getBeanConfigurationProperty("Feldwert"));
 }

 @Override
 protected boolean saveUiDataToConfiguration()
 {
 setBeanConfigurationProperty("User", editorUser.getText());
 setBeanConfigurationProperty("EventTyp", editorEventTyp.getText());
 setBeanConfigurationProperty("LinkId", editorLinkId.getText());
 setBeanConfigurationProperty("Feldwert", editorFieldValue.getText());
 return true;
 }
 }

At runtime you have to evaluate the IvyScript the user have entered into the ivy script editors. If you implement for example
the AbstractUserProcessExtension class there is a perform method which is executed at runtime. At this point you
want to access the configured data in the editor. The following code snippet show how you can evaluate the value of an
IIvyScriptEditor. If you use the IIvyScriptEditor you only get the value by calling the executeIvyScript
method of the AbstractUserProcessExtension.

 public CompositeObject perform(IRequestId requestId, CompositeObject in,
 IIvyScriptContext context) throws Exception
 {
 IIvyScriptContext ownContext;
 CompositeObject out;
 out = in.clone();
 ownContext = createOwnContext(context);

 String eventtyp = "";
 String linkId = "";
 String fieldValue = "";
 String user= "";

 user = (String)executeIvyScript(ownContext, getConfigurationProperty("User"));
 eventtyp = (String)executeIvyScript(ownContext, getConfigurationProperty("Event Typ"));
 linkId = (String)executeIvyScript(ownContext, getConfigurationProperty("Link-Id"));
 fieldValue = (String)executeIvyScript(ownContext, getConfigurationProperty("Feldwert"));

 // add your call here

 return out;
 }

../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html

Process Modeling

108

Task Tab

On this tab you configure the parameters of the awaited event which is handled as an Intermediate Event Task. The Business
milestone usually sets the current DateTime for process activity analysis and reports.

Warning

The task kind feature is deprecated. These fields only appears if you activate it in Deprecation Preferences or if
there are already values inscribed. Instead use the category field to categorize your tasks.

You can set the name of the business calendar that should be used for the task. In the context of the task ivy.cal will return
this business calendar regardless of what you've set for the case.

For more information about business calendar administration see the engine guide.

For more information about business calendar usage see the Public API of
ch.ivyteam.ivy.application.calendar.IDefaultBusinessCalendar.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). You can use the variable result
that holds additional information about the event received by the Java class.

See Output Tab for a more detailed description.

Note

For each incoming connection you have a separate inX object available which carries the data of the Xth input.
Hover with the mouse over the incoming connections of the element to learn which input connection corresponds
to which variable.

Call & Wait

 The Call & Wait Intermediate Event element is located in the Event & Gateway drawer of the process editor
palette.

Process Modeling

109

Element Details
This element is one of Axon.ivy facilities to integrate custom-made software, legacy systems, proprietary applications or any
other external system through an Axon.ivy Java interface. The Call & Wait element is slitted into a Call part and a Wait part.
The Call part is similar to the Program Interface process element. It can be used to call (send request) an external system.
Whereas the Wait part is similar to the Intermediate Event element and can be used to wait for the response from the external
system. For the process designer the use of a Call & Wait element is easier compared to the use of a Program Interface followed
by an Intermediate Event because he only has to configure one Java class and does not have to care about event identifiers.

The Call part of the element will instantiate a Java class that must implement the interface
IUserAsynchronousProcessExtension and will call the method performRequest each time a process
comes to the Call & Wait element. The common way to implement a Call bean is to extend the abstract base class
AbstractUserAsynchronousProcessExtension.

The Wait part of the element will interrupt the process execution and waits for an external event to occur. Technically spoken
the current task will be ended and a new system task is created that waits for the event. If the event is fired the new task and
therefore the process after the Call & Wait element will be executed.

You provide a listener for the external event by implementing a public static inner Java class of the
Call part with the name IntermediateEvent that implements the IProcessIntermediateEventBean
interface. The Call & Wait element instantiates the IntermediateEvent Java class. It can then trigger
the event by calling the method fireProcessIntermediateEventEx on the Axon.ivy runtime engine
IProcessIntermediateEventBeanRuntime. The common way to implement a Wait (Intermediate Event) bean is
to extend the abstract base class AbstractProcessIntermediateEventBean.

The interface also includes an inner editor class to parametrize the beans. The editor provides one configuration which is set
on both beans the Call and the Wait bean. You will find the documentation of the interface and the abstract class in the Java
Doc of the Axon.ivy Public API.

How Call & Wait work on an Axon.ivy Engine Enterprise Edition

An Axon.ivy Engine Enterprise Edition consists of multiple server instances (nodes) that are running on different
machines.

As described above Call & Wait consists of two parts:

• The Call part will be instantiated on all nodes, and it will do its job wherever it resides. After a call part a new task
will be created in a waiting status

• Normally the Wait part works only on the master node. When it fires (when the external event arrives) the task state
will change. Such a task can be executed on every node.

This is the standard behaviour in order to eliminate racing conditions in normal Call & Wait situations.

Described behaviour is regarded as correct and it should cover most of the use cases. In case you understood the
behaviour and still you need the Wait part of your Call & Wait bean to run on all closer nodes, you may instruct the
engine to do so. Just have your bean class implement the (empty) marker interface IMultiNodeCapable and the
above restriction will no longer apply.

Please be aware of the fact that having multiple running instances of the same bean may lead to race conditions!

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

../PublicAPI/ch/ivyteam/ivy/process/extension/IUserAsynchronousProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserAsynchronousProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/IProcessIntermediateEventBean.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/IProcessIntermediateEventBeanRuntime.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/AbstractProcessIntermediateEventBean.html
../PublicAPI/ch/ivyteam/ivy/process/beans/IMultiNodeCapable.html

Process Modeling

110

Call Tab

On this tab you set the Java class which implements the interface IUserAsynchronousProcessExtension
and defines a public static inner class called IntermediateEvent that implements the interface
IProcessIntermediateEventBean. This class is called when the Call & Wait step is executed. Furthermore, you can
define exception handlers to react on errors such as not reachable systems, insufficient privileges and many more.

Figure 2.66. The Call tab

Java Class to Execute The fully qualified name of the Call & Wait Java class
implementing IUserAsynchronousProcessExtension and a public static
inner class called IntermediateEvent that implements the interface

IProcessIntermediateEventBean. Use the New Bean Class Wizard () to create
a new Java source file with an example implementation of the bean class.

Tip

You can add a graphical configuration editor for the Java call (i.e. setting the
parameter values) on the Call & Wait inscription mask. See section Tab Editor
for more details.

Program Error Occurs whenever an exception is thrown during the execution of the class. The error can
be handled by a catching “Error Start”.

Timeout Sets a timeout for the return of the call to the Call part Java class.

Timeout Error Occurs when the timeout is reached. The error can be handled by a catching “Error Start”.

Wait Tab

On this tab you define the timeout behaviour during the Wait part of the element.

Figure 2.67. The Wait tab

../PublicAPI/ch/ivyteam/ivy/process/extension/IUserAsynchronousProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/IProcessIntermediateEventBean.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IUserAsynchronousProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/intermediateevent/IProcessIntermediateEventBean.html

Process Modeling

111

Timeout Here you can specify a time (Duration) how long the current case should wait for an intermediate event and what
should happen if no event was received after this time. You can optionally start an exception process, delete the
waiting task or continue the waiting task without receiving an intermediate event.

Tab Editor

This tab displays the editor, that can be integrated in the external Java bean of the process element. The editor is
implemented as an inner public static class of the Java bean class and must have the name Editor. Additionally the
editor class must implement the IProcessExtensionConfigurationEditorEx interface. The common way to
implement the editor class is to extend the abstract base class AbstractProcessExtensionConfigurationEditor
and to override the methods createEditorPanelContent, loadUiDataFromConfiguration and
saveUiDataToConfiguration. The method createEditorPanelContent can be used to build
the UI components of the editor. You can add any AWT/Swing component to the given
editorPanel parameter. With the given editorEnvironment parameter, which is of the type
IProcessExtensionConfigurationEditorEnvironment, you can create text fields that support ivyScript and
has smart buttons which provide access to the process data, environment functions and Java classes.

Here is an example of such an editor:

As you can see, the editor provides you access to any process relevant data, which can be used by your own process elements.
For instance, you can easily transfer process data to your legacy system.

The following part shows the implementation of the editor shown above. As mentioned above Axon.ivy
provides the IIvyScriptEditor which represents a text field with ivyScript support and smart buttons. Inside
createEditorPanelContent use the method createIvyScriptEditor from the editorEnvironment
parameter to create an instance of such an editor. Use the loadUiDataFromConfiguration method to
read the bean configuration and set them to the UI components. Inside this method you can use the methods
getBeanConfiguration or getBeanConfigurationProperty to read the bean configuration. Use the method
saveUiDataToConfiguration to save the data in the UI components to the bean configuration. Inside this method
you can use the methods setBeanConfiguration or setBeanConfigurationProperty to save the bean
configuration.

 public static class Editor extends AbstractProcessExtensionConfigurationEditor
 {
 private IIvyScriptEditor editorUser;
 private IIvyScriptEditor editorEventTyp;
 private IIvyScriptEditor editorLinkId;
 private IIvyScriptEditor editorFieldValue;

 @Override
 protected void createEditorPanelContent(Container editorPanel,
 IProcessExtensionConfigurationEditorEnvironment editorEnvironment)
 {
 editorPanel.setLayout(new GridLayout(4,2));
 editorUser = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorEventTyp = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorLinkId = editorEnvironment.createIvyScriptEditor(null, null, "String");

../PublicAPI/ch/ivyteam/ivy/process/extension/IUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractProcessExtensionConfigurationEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IProcessExtensionConfigurationEditorEnvironment.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html

Process Modeling

112

 editorFieldValue = editorEnvironment.createIvyScriptEditor(null, null);

 editorPanel.add(new JLabel("User"));
 editorPanel.add(editorUser.getComponent());
 editorPanel.add(new JLabel("Event Typ"));
 editorPanel.add(editorEventTyp.getComponent());
 editorPanel.add(new JLabel("Link-Id"));
 editorPanel.add(editorLinkId.getComponent());
 editorPanel.add(new JLabel("Feldwert"));
 editorPanel.add(editorFieldValue.getComponent());
 }

 @Override
 protected void loadUiDataFromConfiguration()
 {
 editorUser.setText(getBeanConfigurationProperty("User"));
 editorEventTyp.setText(getBeanConfigurationProperty("EventTyp"));
 editorLinkId.setText(getBeanConfigurationProperty("LinkId"));
 editorFieldValue.setText(getBeanConfigurationProperty("Feldwert"));
 }

 @Override
 protected boolean saveUiDataToConfiguration()
 {
 setBeanConfigurationProperty("User", editorUser.getText());
 setBeanConfigurationProperty("EventTyp", editorEventTyp.getText());
 setBeanConfigurationProperty("LinkId", editorLinkId.getText());
 setBeanConfigurationProperty("Feldwert", editorFieldValue.getText());
 return true;
 }
 }

At runtime you have to evaluate the IvyScript the user have entered into the ivy script editors. If you implement for example
the AbstractUserProcessExtension class there is a perform method which is executed at runtime. At this point you
want to access the configured data in the editor. The following code snippet show how you can evaluate the value of an
IIvyScriptEditor. If you use the IIvyScriptEditor you only get the value by calling the executeIvyScript
method of the AbstractUserProcessExtension.

 public CompositeObject perform(IRequestId requestId, CompositeObject in,
 IIvyScriptContext context) throws Exception
 {
 IIvyScriptContext ownContext;
 CompositeObject out;
 out = in.clone();
 ownContext = createOwnContext(context);

 String eventtyp = "";
 String linkId = "";
 String fieldValue = "";
 String user= "";

 user = (String)executeIvyScript(ownContext, getConfigurationProperty("User"));
 eventtyp = (String)executeIvyScript(ownContext, getConfigurationProperty("Event Typ"));
 linkId = (String)executeIvyScript(ownContext, getConfigurationProperty("Link-Id"));
 fieldValue = (String)executeIvyScript(ownContext, getConfigurationProperty("Feldwert"));

 // add your call here

 return out;
 }

../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html

Process Modeling

113

Task Tab

On this tab you configure the parameters of the awaited event which is handled as an Intermediate Event Task. The Business
milestone usually sets the current DateTime for process activity analysis and reports.

Warning

The task kind feature is deprecated. These fields only appears if you activate it in Deprecation Preferences or if
there are already values inscribed. Instead use the category field to categorize your tasks.

You can set the name of the business calendar that should be used for the task. In the context of the task ivy.cal will return
this business calendar regardless of what you've set for the case.

For more information about business calendar administration see the engine guide.

For more information about business calendar usage see the Public API of
ch.ivyteam.ivy.application.calendar.IDefaultBusinessCalendar.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). You can use the variable result
that holds additional information about the event received by the Wait part Java class.

See Output Tab for a more detailed description.

Note

For each incoming connection you have a separate inX object available which carries the data of the Xth input.
Hover with the mouse over the incoming connections of the element to learn which input connection corresponds
to which variable.

Process End Page

 The Process End Page element is located in the Event & Gateway drawer of the process editor palette.

Process Modeling

114

Element Details
This elements terminates the current process and displays a dialog page.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

End Page Tab

On this tab you could define the web page displayed when a case ends with this End Page Element.

Dialog Page Pages can be referenced from the content management system or the web content directory. The wizard
allows you to create, select or edit pages.

Please refer to Creating and Editing HTML Pages in the HTML chapter for a more thorough explanation
of this tab section.

Error End

 The Error End Event element is located in the Event & Gateway drawer of the process editor palette.

Element Details
The Error End Event can be used to leave the happy path of a process by throwing an error (e.g. if an approval is denied).
It can also be used to re-throw previously catched errors.

See the Error Handling concept for sample use cases.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Error Tab

On this tab you can configure the Error Code of the error that will be thrown or the error object that should be re-thrown.

Process Modeling

115

Code Tab

On this tab you can execute additional scripts after the error has been created. See Code Tab for a more detailed description.

Note

Additionally to the regular variables of the Code Tab you have the following variable available:

error References the BpmError which will be thrown.

Process End

 The Process End element is located in the Event & Gateway drawer of the process editor palette.

Element Details
This elements terminates the current process.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

User Task

 The User Task element is located in the Activity drawer of the process editor palette.

Element Details
The User Task element calls a User Dialog in a new Task. Thus, it combines the behavior of a Task Switch Event and a User
Dialog. You can either call a normal Html Dialog or an Offline Dialog - they both are based on JSF technology and can run
in a Web Browser as well as on a mobile client.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Call Tab

The Call tab defines what User Dialog component should be called and how it should be started. The input parameters for
the selected start method can be mapped here.

../PublicAPI/ch/ivyteam/ivy/bpm/error/BpmError.html

Process Modeling

116

Figure 2.68. The Call tab

User Dialog Defines the User Dialog to be started by it's ID. The referenced User Dialog can either
be a normal JSF based dialog component (Html Dialog) or a JSF based dialog that is
designed for offline usage (Offline Dialog).

Selects an existing User Dialog

Creates a new User Dialog and uses it

 Uses a dynamically defined ID from a data class attribute

Note

The behavior of the task will be noticeable different either if you select
an Html Dialog or an Offline Dialog. By selecting an Offline Dialog, an
Offline Task - designed for processing without continuous connection to
the workflow server - will be generated.

Start Defines the start method that should be called on the selected User Dialog.

If the User Dialog to be started is defined dynamically, then the start cannot be selected.
Instead the default start() method (no input, no output) will be called by default. If this
method does not exist on the dynamically defined User Dialog, then a runtime error
will occur.

If the User Dialog to be started is defined statically (i.e. with a specific ID) then the
start combo box offers a list of all start methods that are declared by the selected User
Dialog.

Start Parameters Definition Define the input parameters for the called User Dialog.

If the selected start method requires any parameters, those may be mapped here to an
param object, which offers a field for each declared start method parameter. You can
define each parameter individually from the calling process's data.

Process Modeling

117

Tip

Alternatively you can define the call parameters in the scripting field
below the attribute table, e.g. if you need to perform some calculation in
order to define a call parameter. You can also mix the two forms, in which
case the table's definitions will be executed before the scripting block.

Note

The result values of the started User Dialog (if any) are mapped back onto
the calling process's data on the Output tab. They are available as fields
on a result variable.

Task Tab

On this tab you can configure the Task of this User Task. See “Task Tab” in the Task Switch Gateway element.

Case Tab

On this tab you can configure the Case of this User Task. See “Case Tab” in the Task Switch Gateway element.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

Additionally to the regular variables of the Output Tab you have the following variable available:

result If the selected start method defines return parameters they will be available
as fields of the result variable.

The variable is not available if the start method does not return any values
(i.e. void).

Web Page

 The Web Page element is located in the Activity drawer of the process editor palette.

Element Details

This element presents an interactive web page to the user via his browser and may be defined in the CMS or externally by
a .html, or .jsp file.

For each exit of this element (the outgoing arrows from this element) a link is set that defines which way the process proceeds.
By clicking on such a link (it may be a simple link or one combined with an input form) the user carries the data object with
the process data to the appropriate exit, i.e. process path.

In case of a form the data that have been entered into it will be assigned to the process data attributes.

Process Modeling

118

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Tab Dialog

On this tab you set the dialog page and its properties. In addition, you are able to create the Web Page from scratch and store
it in the CMS.

Figure 2.69. The Dialog tab

Dialog Page The selected page will be displayed in the user's browser whenever the element is activated
by the process. Pages can be referenced from the content management system or the web
content directory. The wizard allows you to create, select or edit pages.

Please refer to Creating and Editing HTML Pages in the HTML chapter for a more thorough
explanation of this tab section.

Output Links List of the links with which the process may proceed to the next step. You can edit the names
of the links as you like but they always need to have an .ivp file extension. The links appear
in the order they were connected with the HTML Page element. Pausing the mouse cursor
shortly over one of the outgoing arrows of the element shows a tool tip that indicates the
name of the corresponding link.

Form Archive Each page (including the forms located on it and the inputs of the user) are archived on the
Axon.ivy Engine. The archived pages (forms) are associated with the running case and the
running task and can be inspected (viewed) afterwards in the workflow user interface.

Responsible Role Restricts the access to this dialog to the given role.

Process Modeling

119

Role Violation error This error is thrown whenever a user tries to access the dialog page without having granted the
required role. The error can be handled by a catching “Error Start” or by an “Error Boundary
Event”

User Dialog

 The User Dialog element is located in the Activity drawer of the process editor palette.

Element Details
The User Dialog element is used to call a User Dialog from a process. You can both start User Dialogs from a business process
as well as from another User Dialog. Input and return parameters for/from the started User Dialog can be mapped using the
call and output tabs of this element.

If a User Dialog is opened from within another User Dialog's logic then certain restrictions apply (see below).

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Call Tab

The Call tab defines what User Dialog component should be called and how it should be started. The input parameters for
the selected start method can be mapped here.

Figure 2.70. The Call tab

User Dialog Defines the User Dialog component to be started by it's ID.

You can either select a Rich Dialog component or a Html Dialog component by clicking

on the User Dialog Browser () button or by defining the ID dynamically from a data

class attribute by clicking on the Attribute () button.

Start Defines the start method that should be called on the selected User Dialog.

Process Modeling

120

If the User Dialog to be started is defined dynamically, then the start cannot be selected.
Instead the default start() method (no input, no output) will be called by default. If this
method does not exist on the dynamically defined User Dialog, then a runtime error
will occur.

If the User Dialog to be started is defined statically (i.e. with a specific ID) then th start
combo box offers a list of all start methods that are declared by the selected User Dialog.

Execution (only available for Rich
Dialogs)

Defines whether the selected Rich Dialog should be started synchronously or
asynchronously.

Rich Dialogs are normally started synchronously, i.e. the calling process will stop
and wait for the Rich Dialog to close before it continues. If you start a Rich Dialog
asynchronously, then the calling process will immediately continue and will not wait
for the started Rich Dialog to return any parameters. As a consequence of this, the
called Rich Dialog will be running in parallel to the continuing process and it's return
parameters will not be considered for further execution.

Note

If a synchronous Rich Dialog is started from within a Rich Dialog
process then it will always open as a modal dialog. In this case, all target
parameters of the Display Tab will be ignored. Any custom window
configuration, however, will be used and applied for the modal dialog.

If you call a synchronous Rich Dialog from a callable process then the
specification of the Display parameters makes sense, because the callable
may both be invoked from a business process (in which case they are
considered) or a Rich Dialog process (in which chase they are ignored).

Warning

Do not open synchronous Rich Dialogs inside a Rich Dialog start
method.

This will not work for technical reasons, because the initialization of the
outer Rich Dialog will not have been completed at this point of time.

You may, however, open any number of asynchronous Rich Dialogs
inside a start method.

If you'd like to open a synchronous Rich Dialog immediately after some
Rich Dialog becomes visible, then you should do this in a deferred event
process that you trigger with the usage of a hidden button in conjunction
with ivy.rd.clickDeferred(..).

See the similar warning note of the Synchronize UI process element for
an example of a deferred UI process execution.

Start Parameters Definition Define the input parameters for the called User Dialog.

If the selected start method requires any parameters, those may be mapped here to an
param object, which offers a field for each declared start method parameter. You can
define each parameter individually from the calling process's data.

Tip

Alternatively you can define the call parameters in the scripting field
below the attribute table, e.g. if you need to perform some calculation in

Process Modeling

121

order to define a call parameter. You can also mix the two forms, in which
case the table's definitions will be executed before the scripting block.

Note

The result values of the started User Dialog (if any) are mapped back onto
the calling process's data on the Output tab. They are available as fields
on a result variable.

User Context (only available for
Rich Dialogs)

Shows the current Rich Dialog User Context configuration.

Press the button configure to edit the configuration in a separate dialog.

Note

The Rich Dialog User Context is used to store the UI State.

Display Tab (only available for Rich Dialogs)

The Display tab defines where the Rich Dialog is opened. If you want to open the Rich Dialog in a new Window you can
ignore this tab.

Target Location Define here where the started Rich Dialog should open. The target of a call is always
a Display container inside a Window, therefore you need to specify both a display and
a window.

Note

Depending on whether the Rich Dialog is started from a business process
or a callable process or from within another Rich Dialog you have
different options available for the target location selection.

The option THIS both for display and window is only available if the
Rich Dialog is started directly from within another Rich Dialog, because
it uses the surrounding dialog as a reference.

If - at runtime! - a synchronous Rich Dialog is opened from inside a
callable process that was invoked from a Rich Dialog process, then all
target location parameters will be ignored and the Rich Dialog will be
shown inside a modal dialog window.

If the Rich Dialog is invoked directly (e.g. not via a callable process)
from a Rich Dialog process, then the display tab shows the following
message, because it can be determined for sure that the Rich Dialog will
open modally:

Target location settings can then not be specified for this element. This
behavior only applies to synchronous Rich Dialogs that are called from
a Rich Dialog process.

Possible target window specifications:

Process Modeling

122

THIS The Rich Dialog will be opened in the same window as the calling Rich
Dialog. (This option is not available for Rich Dialogs that are opened
from a business process or a callable sub process).

NEW A new window will be opened to show the Rich Dialog. The type and
layout of the new window can be specified by selecting a window type.

Note

The system offers some basic window types like card or
tabbed, but window types can also be specified by the
user inside the configuration editor. A window type is
nothing more than a window with a specific Rich Dialog
(that defines at least one display component), which will
serve as basic content of the window. The Rich Dialog that
you actually want to load will then be loaded onto the/a
display of the Rich Dialog that specifies the window type.
Example: the tabbed window type uses a Rich Dialog that
only consists of a tabbed display.

EXISTING A specific window id must be provided. The Rich Dialog will then be
loaded into the window that is referenced by the that window id.

DEFAULT The Rich Dialog will be shown inside the singleton default window of
the application. The default window will be created and brought to front,
if it isn't open yet.

APPLET The Rich Dialog will be opened inside an applet. Obviously this option
only makes sense inside a HTML environment/business process. For
an applet, a window type may be specified, which will be used for the
applets (internal) layout.

You may also specify a custom applet configuration (see Custom Applet
Configuration below) to specify the applet tag's rendering properties on
the HTML page.

Warning

Please note that for technical reasons only a single instance
of an applet can exist per user and session!

Warning

If you work with applets, then you must start your
Axon.ivy processes that open the applets from an external
browser. The internal browser of Axon.ivy is not able to
show applets for security reasons.

To start your applet processes from an external browser
proceed as follows:

1. Start the engine to compile and show the list of
startable process starts.

2. Open an external browser and navigate to http://
localhost:8081/ivy/

Process Modeling

123

3. Start your applet process with a click on the respective
link.

Possible target display specifications:

TOP The Rich Dialog will be loaded onto the first display that is found in the
component hierarchy of the specified target window.

THIS The Rich Dialog will be opened on the same display as the calling Rich
Dialog, i.e. as a sibling of the surrounding dialog. (This option is not
available for Rich Dialogs that are opened from a business process or a
callable sub process).

SPECIFIC The id of a display must be provided. This display is then searched within
the specified target window and the Rich Dialog will be loaded onto it,
if it is found.

Custom Window/Applet
Configuration

The appearance of the window or applet to open may be configured here.

Note

Whether the here defined parameters are actually used at runtime,
depends on the specific execution context. If the Rich Dialog is loaded
onto an existing window (e.g. with THIS or EXISTING) then the
window configuration will obviously not be used.

If the Rich Dialog is opened as a modal dialog (because it is synchronous
and invoked from a Rich Dialog process) then the window configuration
will be used. Similarly it will be applied to NEW windows and to APPLET
windows (for the latter in a slightly modified form).

If the DEFAULT window does not yet exist, then the window
configuration will be used to create it, otherwise it will be ignored.

Activate the option Specify a custom window/applet configuration.

If you've specified a window target, then the title and size of the new window to be
opened may be specified (if no size is specified, then the window's size is calculated
from the opened Rich Dialog's preferred size). You can also specify whether the new
window should be resizeable, centered and support maximization.

Use the option close after last rich dialog if the window should be closed automatically
when the last Rich Dialog that it contains is closed.

Tip

If you don't specify a custom window/applet configuration then the
default configuration will be used: the new window's ID will be used as
title, the window will be resizeable and centered and closed after the last
rich dialog.

If you've specified an applet target, then resizeable, centered and close after last rich
dialogare not available. Instead you may optionally define the URI of a page in the
content management system that will be used to render the applet.

Inside that page's HTML code, you may use two predefined variables,
${PAGE_TITLE} and ${APPLET}. ${PAGE_TITLE} will be filled with the title
that is specified inside the custom display configuration. ${APPLET} will be replaced

Process Modeling

124

with HTML code to render the applet on the page. The specified width and height and
the optional maximize flag will determine the applets size on the page.

How to create a custom applet configuration

Create a content object with type source in the CMS. Enter the code of a valid HTML
page as the content object's value. Use the predefined variables ${PAGE_TITLE} and
${APPLET} to specify where title and applet tag should be inserted into the HTML
code.

You can use the following example code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>${PAGE_TITLE}</title>
</head>
<body>
 <p>Below you see my great applet.</p>
 <p>${APPLET}</p>
 <p>The blue border is created with CSS.</p>
</body>
</html>

After you've defined the applet page HTML code, open the Rich Dialog element from
where you want to start the applet. Specify a custom applet configuration and enter the
URI of the source content object that you just created in the Page Uri field.

Now open an external browser (as explained above) and start the applet business
process from there. Something similar to the following screen shot should be the result
of your first RichApplet invocation:

Process Modeling

125

Note

If you don't specify a custom applet configuration, then the applet will be
rendered on a page that is specified by the selected applets window type
or - if that window type does not specify a custom applet configuration -
on an empty page with a default size of 400 x 400 pixel.

Tip

Usually you open your Rich Applets sequentially, one at a time. However,
if you choose to invoke another process that opens another asynchronous
APPLET Rich Dialog and if there's already a RichApplet running, then
the loading of the new Rich Dialog will be redirected to the already
existing applet (similar to the DEFAULT application window).

Panel Display Name Depending on the capabilities of the target display there may be the possibility to show
a name for the started Rich Dialog's panel (e.g. the tab title if the target display is a
Tabbed Display). This optional display name can be entered here, either as constant

value or dynamically (use the button to select from process data). If the field is left
empty, then the Rich Dialog name will be used as display name.

Panel Display Icon Depending on the capabilities of the target display there may be the possibility to show
an icon for the started Rich Dialog's panel.

Custom Panel Display Parameters Depending on the capabilities of the target display there may be custom parameters to
define how the started Rich Dialog's panel is displayed.

Consult the documentation of the display to find out what custom parameters are
available.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Process Modeling

126

Note

Additionally to the regular variables of the Output Tab you have the following variables available:

result If the selected start method defines return parameters they will be available
as fields of the result variable.

The variable is not available if the start method does not return any values
(i.e. void).

panel The panel of the just finished User Dialog is still available at the time when
the output is calculated. You can e.g. use this variable to request some inner
state of the just finished User Dialog (apart from the returned values available
on the result variable).

Script Step

 The Script Step element is located in the Activity drawer of the process editor palette.

Element Details
With this element you can perform any transformation of the process data or start some other processing in order to make
preparations for later steps.

Warning

It is strongly recommended to use the dedicated process elements if you intend to use specific functionality and/
or technology (such as invoking Web Services, querying Databases and so on) as these elements encapsulate
their use and handle exceptions internally.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Code Tab

On this tab you can execute any script, e.g. define output data of this element. See Code Tab for a more detailed description.

Tip

The entered code will be executed after the execution of the output tab. Although this may seem a bit counter-
intuitive at first, you should simply regard the code tab as an alternative way of defining output data. The general
recommendation is to use the output table to define simple assignments and the code tab if more extensive
scripting is needed to calculate data.

Process Modeling

127

Disable Permission Checks
(Execute this Script Step as
SYSTEM)

With this option enabled the scripts from the Output and Code Tab runs without
security permission checks. The execution of the scripts will never throw any
PermissionDeniedException.

Warning

Use this possiblity with caution! In this case you as process developer
are reponsible that only authorized users can reach this Script Step in the
process.

DB Step

 The Database Step (DB Step) element is located in the Activity drawer of the process editor palette.

Element Details
With this element you can execute SQL commands on the database server. You can access all the databases that are defined
in the DB Configuration.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

DB Tab

Here you define which SQL command you want to execute on which database. Depending on the kind of SQL command you
are supported during the construction of your command.

Figure 2.71. The DB Tab

Process Modeling

128

Kind of Query Choose the kind of query you like to perform. Axon.ivy offers dedicated UI support for the most
common query types such as Select (Read Query), Insert (Write Query), Update (Update Query)
and Delete (Delete Query).

If you require some non-standard SQL or if you want to issue a complex SQL statement that is not
covered by the Query Definition mask then you may also select Any Query and write pure SQL
instead. Expanding of process attributes will also work in the Any Query mode.

Warning

The use of the Any Query option can lead to SQL injection vulnerabilities if not used
carefully.

E.g. if a String variable is passed into a query then an attacker could provide a valid
partial SQL statement which is then executed in the context of the query.

Assume the following SQL statement is configured as an SQL query: SELECT *
FROM Subscriber WHERE Name LIKE 'in.searchText%'. Now if an
attacker manages to pass a valid SQL statement into the in.searchText variable
then a so called SQL injection takes place, which can result in a complete data breach
on the configured database. Process designers are responsible to only pass sanitized
data into an SQL query. In some cases it might be better to access the Database with
JPA/Hibernate or prepared statements using JDBC. For more information see: SQL
Injection Prevention Cheat Sheet

Database Choose the database on which the command is executed. The database must be configured in the DB
configuration. Depending on the active environment the right connection properties of the database
will be used.

Warning

Please note that the DB2 database is currently not fully supported by the DB Step.
The only query kind that is suitable for DB2 connections is Any Query. For all other
query kinds the Query Definition mask is currently not working correctly (e.g. query
fields can not be edited / defined).

There is also an IvySystemDatabase datasource which points to the current System Database.
Normally you would prefer your own database to split valuable customer data from the system data.

Warning

Do not manipulate system database tables prefixed with IWA_ within the
IvySystemDatabase this could lead to unexpected runtime behavior.

Query Definition Depending on the type of query you can compose your command with almost no knowledge about
databases and SQL.

Table The name of the database table to read from, insert into,
update in or delete from.

Fields The fields of the database table to read from, insert values
into or update values in.

Condition A condition that filters the rows of the table to read, update
or delete.

Sort Defines the fields after which the rows that are read from
the database are sorted.

https://en.wikipedia.org/wiki/SQL_injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Process Modeling

129

Lot size Defines how many rows are read from the database. Enter 0
or leave it empty for no limitation.

Start index Defines the number of the row that is the first row in the read
recordset out of the overall rows which match the condition.

Quote IvyScript variables IvyScript variables in the SQL query are quoted depending
on the data type of the value of the variable. For example
string values are quoted with single quotes (e.g. hello ->
'hello'). Sometime you do not want that the values are quoted
because the variable do not contain a single value but a part
of an SQL query (e.g. "id=123 AND name=ivy"). Therefore
you can disable the quoting with this check box.

Error Is thrown whenever errors during the execution of the database command occur. The error can be
handled by a catching “Error Start” or by an “Error Boundary Event”.

Tip

SQL experts can review the generated SQL command by clicking on the Show
generated SQL or by choosing Any other query in the query combo box.

Data Cache Tab

On this tab you can configure the settings for data cache access or invalidation. See Data Cache Tab for a more detailed
description.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Code Tab

On this tab you can execute any script, e.g. define output data of this element. See Code Tab for a more detailed description.

Tip

The entered code will be executed after the execution of the output tab. Although this may seem a bit counter-
intuitive at first, you should simply regard the code tab as an alternative way of defining output data. The general
recommendation is to use the output table to define simple assignments and the code tab if more extensive
scripting is needed to calculate data.

Web Service Call Activity

 The Web Service Call Activity element is located in the Activity drawer of the process editor palette.

Element Details
Using the Web Service Call Activity you can invoke Web Services.

Process Modeling

130

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Request Tab

Figure 2.72. Web Service Call Request Tab

Client Selects the Web Service Client to use. If no client is yet accessible in the project, a new client can instantly
be created via the plus button. The available Web Service Clients are managed in the “Web Service Clients
Editor”.

Port Selects the Port of the Web Service. The Port mainly defines the protocol that is used (e.g. SOAP, SOAP
1.2, HTTP).

Operation Selects the Operation of the Web Service. Calls to this operation with real data can be tested by clicking on
the Test button. See “Web Service Tester”.

Properties Values to fine tune the configuration of the Web Service Call. Most of these properties are interpreted by
features of the client (e.g. an authentication feature).

Values of properties can be scripted.

Properties configured on this Activity may override global configuration properties of the Web Service.

Parameters Defines the input parameters to send to the remote Web Service operation. Values can be scripted.

Process Modeling

131

Response Tab

Figure 2.73. Web Service Call Response Tab

Body Maps the result returned by the Web Service Call back to any process data or executes code on it. The
result is provided as wsResponse variable.

Error handling • On Error: Choose the Error Code to throw if the web service call fails with an exception. Pick
'>> Ignore Exception' to continue the process execution even though the web service call failed
with an exception.

Data Cache Tab

On this tab you can configure the settings for data cache access or invalidation. See Data Cache Tab for a more detailed
description.

Web Service Tester

The Web Service Tester dialog can be opened by clicking on the Test button next to the Web Service operation selector
on the Request Tab.

Process Modeling

132

Figure 2.74. Web Service Tester Dialog

The Web Service Tester allows to send Test Data to a remote Web Service and simple examination of the returned SOAP
XML envelope. This makes prototyping and testing of Web Services fast and intuitive.

Entered test data can be stored in project preferences by clicking on the save button.

REST Client Activity

 The REST Client Call Activity element is located in the Activity drawer of the process editor palette.

Element Details

Use the REST Client Activity to invoke REST services.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Request Tab

On this tab you can configure the call to the REST service.

Process Modeling

133

Figure 2.75. The REST Client Request tab

Target • HTTP-Method: The first combo lets you select the HTTP method to use. You can choose one of the well
known methods like GET, POST, PUT or DELETE.

• REST-Client: The second combo lets you pick a pre-configured “REST Clients Configuration”.

• Path: The text input can be used to define a resource-path. The provided path will be added to the base URI
which is defined in the “REST Clients Configuration”. Use the attribute browser on the right side to insert
dynamic parts to the URI.

• Parameters: Use this table to define query parameters that should be added to the URI. Or switch the type to
'template' in order to resolve a dynamic path template with a concrete value.

The parameter value is scriptable and can therefore contain process variables or other dynamic content.

• Headers: Will be sent with the request and can be interpreted by the target service. For instance, many REST
APIs can provide data in multiple serialization formats. By setting the Accept header, the preferred format
can be propagated to the target service.

Any other HTTP-Header can also be configured. However, the Authorization header is easier to configure
with an authorization feature on the “REST Clients Configuration”.

• Properties: Are used to configure optional features or native properties of the REST client. They are globally
configurable in the “REST Clients Configuration” properties. Here you can overwrite a property with dynamic
values.

Process Modeling

134

Body For POST and PUT requests the body section can be used to specify that data that will be sent to the REST service.

• Raw: Define the Content-Type first and define any textual content in the editor part. The content can contain
dynamic parts like process data fields. Use the action buttons left to the editor in order to insert a dynamic
variable or function call.

• Form: Send form values as content of type application/x-www-form-urlencoded The form values
are scriptable.

• Entity: Send a complex object as serialized text to the remote REST service. Most Java objects should be
serializable as JSON (application/json) without additional configuration.

The serialization behaviour can be configured for special needs via properties on the client. See ??? [360]

Response Tab

On this tab you can consume response from the REST service.

Process Modeling

135

Figure 2.76. The REST Client Response tab

Body • Result-Type: The first combo defines how the response entity will be read. Pick a Java type that
can be mapped to response entity. The entity object is available in the 'result' variable.

See the chapter below (“JSON to Java”) for a quick comparison of response body mapping solutions.

The deserialization from JSON to a Java object can be customized with properties on the client.
See ??? [360]

• Code: Use the code editor to handle the response or its entity. In most cases, you only need to assign
the 'result' variable to your process data. However, in this editor the JAX-RS 'response' variable is
also available which lets you access the HTTP-status-code and other details of the HTTP response.

Error handling • On Error: Choose the Error Code to throw if the REST client fails with an exception. This is
typically the case if a connection or timeout problem exists. Pick '>> Ignore Error' to continue the
process execution even though the REST service call failed with an exception.

• On Status Code not successful: Fail automatically with an Error Code if the HTTP response status
code is not in the 200 family. Pick '>> Ignore Error' if other status codes are valid and expected.

JSON to Java
The mapping of a JSON response body to a Java object is a simple task. Think of a service that returns a complex JSON. E.g:

{
 "id": 1,
 "name": "Leanne Graham",
 "username": "Bret",
 "email": "Sincere@april.biz",
 "address": {
 "street": "Kulas Light",
 "suite": "Apt. 556",
 "city": "Gwenborough",
 "zipcode": "92998-3874",
 "geo": {
 "lat": "-37.3159",
 "lng": "81.1496"

Process Modeling

136

 }
 },
 "phone": "1-770-736-8031 x56442",
 "website": "hildegard.org",
 "company": {
 "name": "Romaguera-Crona",
 "catchPhrase": "Multi-layered client-server neural-net",
 "bs": "harness real-time e-markets"
 }
}

You can handle this complex JSON object with one of these solutions:

1. Map to Data Class: Create a Data Class with the attributes you need in the business process. Read the result body
with this Data Class. Every attribute that matches by name (case sensitive) with an attribute in the JSON object will
be mapped. Assign the result object to an attribute of your process data. This option should be used if you want to
reflect a small JSON structure.

Process Modeling

137

2. Map to Generated Class: Paste the JSON you receive from the service into a Java object source generator like http://
www.jsonschema2pojo.org/. Generate the Java sources for the JSON structure. Download the sources and add them to a
special source folder (E.g. src_generated). Now you can read the response body to an object of this generated class.

This option should be used if you want to represent a complex JSON structure without writing code yourself.

http://www.jsonschema2pojo.org/
http://www.jsonschema2pojo.org/

Process Modeling

138

3. Map to JSON Node: Read the result body as JsonNode object. Navigate through the object tree and read its field
values manually. This option should be used if you don't want to reflect the whole object structure and only need parts
from the object tree.

Process Modeling

139

Customization
The inscription mask provides a handy UI that makes most calls to a REST service very simple. However, there are always
corner cases where you need to configure something, which is not configurable on the UI. In these rare cases, you can use the
fluent JAX-RS API to call the service and interpret the response. To do so you can choose 'JAX_RS' as HTTP Method. In the
scripting field that became visible you can configure every detail of the REST request done by this element.

In the scripting field, the variable client holds the REST client chosen in the Target section. The whole setup from the
Target section will be applied to this client variable.

Call from Java

Rest Client calls can also be executed via Public API without using the Rest Client Activity.

The entry point to access Rest Clients is Ivy.rest(). The returned object is an instance of a javax.ws.rs.client.WebTarget
which is pre-configured as defined in the “REST Clients Configuration”. It provides fluent API to call the remote REST
service.

Sample

http://docs.oracle.com/javaee/7/api/javax/ws/rs/client/WebTarget.html

Process Modeling

140

// retrieve pre-configured rest service client
WebTarget client = Ivy.rest().client("myServiceName"):

// GET request to receive a simple string
String token = Ivy.rest().client(UUID.fromString("e00c9735-7733-4da8-85c8-6413c6fb2cd3")).request().get(String.class);

// POST request to send a complex object
Ivy.rest().client("crmService").request().post(javax.ws.rs.client.Entity.json(myPerson));

Re-use configuration

If you notice that you configure precisely the same thing on multiple Rest Client Activities you can reduce this duplication.

Instead of applying the configuration multiple times, it can be set globally on the “REST Clients
Configuration”. Almost any aspect of a Rest Client call can be configured by implementing a
custom feature (javax.ws.rs.core.Feature). Our authorization feature can be taken as an example:
ch.ivyteam.ivy.rest.client.authentication.HttpBasicAuthenticationFeature.

E-Mail Step

 The E-Mail Step element is located in the Activity drawer of the process editor palette.

Element Details

This element allows to send e-mails out of processes (e.g. for information or alert purposes). The general configuration must
be set in the E-Mail preferences for the Axon.ivy Designer and in the Engine Administration for the Axon.ivy Engine.

With the default E-Mail preferences mails will be sent to a development SMTP server that quickly shows you the mailboxes
in the 'Mail Messages' view of the Designer.

Note

In the designer the sender (from) and the recipient (to) are always taken from the E-Mail Preferences, so you can
easily test whether the mails are sent correctly by using your own e-mail address (or a dedicated test address)

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Tab Header

In this tab the e-mail header is defined. You can use the CMS and the process data (the In variable) to compose the header
fields.

Process Modeling

141

Figure 2.77. The Header Tab

Subject The title of the e-mail to send.

From The sender of the e-mail (always use a valid e-mail address).

Reply to The e-mail address which is used by most e-mail clients when the reader clicks on "Reply" or "Reply all".
Always use a valid e-mail address.

To The recipient(s) of the e-mail. Multiple recipients can be separated by a comma or semi-colon.

CC The recipient(s) in carbon copy of the e-mail. Multiple recipients can be separated by a comma or semi-colon.

BCC The recipient(s) in blind carbon copy of the e-mail. Multiple recipients can be separated by a comma or semi-
colon.

Error Is thrown whenever an error occurs during the execution of this element. The error can be handled by a catching
“Error Start” or by an “Error Boundary Event”.

Tab Content

In this tab the e-mail content is defined.

Figure 2.78. The Content Tab

Message The text of the e-mail. Use the CMS to have messages in multiple languages.

Process Modeling

142

Tip

Start your message with an <HTML> tag to let you define your whole message in HTML format.
(of course at the end of message an </HTML> is expected)

Tab Attachments

In this tab you can attach files to your e-mail. Each attachment line below on the screenshot represents one file. You can
choose a file directly, take a process attribute with the type File, select a CMS entry or even build up the filename using
script(s). The provided reference will be searched as CMS entry first, if no CMS entries found then the system will search
the name as file in your Axon.ivy file area.

Note

CMS entry names do not have an extension (meanwhile filenames used to have one) so that the lookup order
should cause no file overlapping.

Figure 2.79. The Attachment Tab

Tip

Right click on a file input line to access further commands.

Embedded Subprocess

 The Subprocess element is located in the Activity drawer of the process editor palette.

Element Details
An embedded subprocess folds a part of a process into a box. This makes hierarchical structuring of the process model possible.
Sub processes are obtained top down or bottom up. Either by selecting and wrap parts of a process or by inserting an (initially
empty) embedded sub element from the palette.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Process Modeling

143

Call Sub

 The Call Sub element is located in the Activity drawer of the process editor palette.

Element Details
The Call Sub element allows to embed a process (independent subprocess) into an other. This is like jumping from the main
process into the called sub process, execute the sub process and afterwards jump back. Process data attributes from the main
process are mapped to parameters for the called sub process and the called sub process will return result parameters back
to the main process.

Note

The input and result parameters of the called process are defined on the start element of the called process.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Process Call Tab

In this tab you choose the process to be called and map process data attributes to the input parameters of the called process.
You can use any IvyScript expression in the parameter mapping.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

The variable result contains the output parameters that are returned by the called sub process (according to it's interface
definition).

E.g. if the called process returns a String errorMessage and an Employee object employee then the variable
result will have two fields: errorMessage and employee, respectively. You can map those fields to the attributes
of the outgoing process data:

 out.msg = result.errorMessage is initialized

Process Modeling

144

 ? ("An error occurred during selection: "
 + result.errorMessage)
 : "";
 out.selectedEmployee = result.employee;

Trigger Step

 The Trigger Step element is located in the Activity drawer of the process editor palette.

Element Details
With the Trigger element its possible to start a new workflow. The trigger element triggers a Request Start element, which
has an enabled triggered start mechanism. On call, the trigger element creates a case and a task with the defined configuration
on the Request Start element. The new created task is returned to the Trigger element.

On call, after the creation of the new case and task, the workflow goes ahead through the process. When the created task starts
(some time later, by user interaction or automatically by the system), the process starts at the Triggered Start element.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Trigger Tab

On this tab you can configure the Start Signature and the mapping of input parameter to the process data. The Start Signature
is defined by its name and its parameter type and order.

Process Modeling

145

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

The variable result contains the created task that are returned by the triggered Request Start.

PI (Programming Interface) Step

 The Program Interface Step element is located in the Activity drawer of the process editor palette.

Element Details
This element is one of Axon.ivy facilities to integrate custom-made software, legacy systems, proprietary applications or
any other external system through a Java interface. The Program Interface element will instantiate a Java class that must
implement the interface IUserProcessExtension and will call the method perform each time a process comes
to the Program Interface. The common way to implement a Program Interface bean is to extend the abstract base class
AbstractUserProcessExtension. The interface also includes an inner editor class to parametrize the bean. You will
find the documentation of the interface and the abstract class in the Java Doc of the Axon.ivy Public API.

Note

Since 3.x this element has become somewhat obsolete, since it has become very easy to create and call your
own Java classes from IvyScript. However, the PI element still provides a standardized interface to a third party
Java class and can provide a custom made editor for parametrization.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Tab PI

On this tab you set the Java class which implements the interface IUserProcessExtension which is called when the PI
step is executed. Furthermore, you can define exception handlers to react on errors such as not reachable systems, insufficient
privileges and many more.

Figure 2.80. The PI tab

../PublicAPI/ch/ivyteam/ivy/process/extension/IUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IUserProcessExtension.html

Process Modeling

146

Java Class to Execute The fully qualified name of the PI Java class implementing IUserProcessExtension.
You can use default copy & paste commands, open a Java Type Browser to search for the
class or you use the predefined Wait class which just waits for a given period of time.

Use the New Bean Class Wizard () to create a new Java source file with an example
implementation of the bean class.

Tip

You can add a graphical configuration editor for the Java call (i.e. setting the
parameter values) on the PI inscription mask. See section Tab Editor for more
details.

Program error Occurs whenever an exception is thrown during the execution of the class. The error can
be handled by a catching “Error Start”.

Timeout Sets a timeout for the return call to the Java PI class.

Timeout error Occurs when the timeout is reached. The error can be handled by a catching “Error Start”.

Tab Editor

This tab displays the editor, that can be integrated in the external Java bean of the process element. The editor is
implemented as an inner public static class of the Java bean class and must have the name Editor. Additionally the
editor class must implement the IProcessExtensionConfigurationEditorEx interface. The common way to
implement the editor class is to extend the abstract base class AbstractProcessExtensionConfigurationEditor
and to override the methods createEditorPanelContent, loadUiDataFromConfiguration and
saveUiDataToConfiguration. The method createEditorPanelContent can be used to build
the UI components of the editor. You can add any AWT/Swing component to the given
editorPanel parameter. With the given editorEnvironment parameter, which is of the type
IProcessExtensionConfigurationEditorEnvironment, you can create text fields that support ivyScript and
has smart buttons which provide access to the process data, environment functions and Java classes.

Here is an example of such an editor:

As you can see, the editor provides you access to any process relevant data, which can be used by your own process elements.
For instance, you can easily transfer process data to your legacy system.

The following part shows the implementation of the editor shown above. As mentioned above Axon.ivy
provides the IIvyScriptEditor which represents a text field with ivyScript support and smart buttons. Inside
createEditorPanelContent use the method createIvyScriptEditor from the editorEnvironment
parameter to create an instance of such an editor. Use the loadUiDataFromConfiguration method to
read the bean configuration and set them to the UI components. Inside this method you can use the methods
getBeanConfiguration or getBeanConfigurationProperty to read the bean configuration. Use the method
saveUiDataToConfiguration to save the data in the UI components to the bean configuration. Inside this method
you can use the methods setBeanConfiguration or setBeanConfigurationProperty to save the bean
configuration.

../PublicAPI/ch/ivyteam/ivy/process/extension/IUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractProcessExtensionConfigurationEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IProcessExtensionConfigurationEditorEnvironment.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html

Process Modeling

147

 public static class Editor extends AbstractProcessExtensionConfigurationEditor
 {
 private IIvyScriptEditor editorUser;
 private IIvyScriptEditor editorEventTyp;
 private IIvyScriptEditor editorLinkId;
 private IIvyScriptEditor editorFieldValue;

 @Override
 protected void createEditorPanelContent(Container editorPanel,
 IProcessExtensionConfigurationEditorEnvironment editorEnvironment)
 {
 editorPanel.setLayout(new GridLayout(4,2));
 editorUser = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorEventTyp = editorEnvironment.createIvyScriptEditor(null,null, "String");
 editorLinkId = editorEnvironment.createIvyScriptEditor(null, null, "String");
 editorFieldValue = editorEnvironment.createIvyScriptEditor(null, null);

 editorPanel.add(new JLabel("User"));
 editorPanel.add(editorUser.getComponent());
 editorPanel.add(new JLabel("Event Typ"));
 editorPanel.add(editorEventTyp.getComponent());
 editorPanel.add(new JLabel("Link-Id"));
 editorPanel.add(editorLinkId.getComponent());
 editorPanel.add(new JLabel("Feldwert"));
 editorPanel.add(editorFieldValue.getComponent());
 }

 @Override
 protected void loadUiDataFromConfiguration()
 {
 editorUser.setText(getBeanConfigurationProperty("User"));
 editorEventTyp.setText(getBeanConfigurationProperty("EventTyp"));
 editorLinkId.setText(getBeanConfigurationProperty("LinkId"));
 editorFieldValue.setText(getBeanConfigurationProperty("Feldwert"));
 }

 @Override
 protected boolean saveUiDataToConfiguration()
 {
 setBeanConfigurationProperty("User", editorUser.getText());
 setBeanConfigurationProperty("EventTyp", editorEventTyp.getText());
 setBeanConfigurationProperty("LinkId", editorLinkId.getText());
 setBeanConfigurationProperty("Feldwert", editorFieldValue.getText());
 return true;
 }
 }

At runtime you have to evaluate the IvyScript the user have entered into the ivy script editors. If you implement for example
the AbstractUserProcessExtension class there is a perform method which is executed at runtime. At this point you
want to access the configured data in the editor. The following code snippet show how you can evaluate the value of an
IIvyScriptEditor. If you use the IIvyScriptEditor you only get the value by calling the executeIvyScript
method of the AbstractUserProcessExtension.

 public CompositeObject perform(IRequestId requestId, CompositeObject in,
 IIvyScriptContext context) throws Exception
 {
 IIvyScriptContext ownContext;
 CompositeObject out;
 out = in.clone();
 ownContext = createOwnContext(context);

 String eventtyp = "";
 String linkId = "";
 String fieldValue = "";

../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/IIvyScriptEditor.html
../PublicAPI/ch/ivyteam/ivy/process/extension/impl/AbstractUserProcessExtension.html

Process Modeling

148

 String user= "";

 user = (String)executeIvyScript(ownContext, getConfigurationProperty("User"));
 eventtyp = (String)executeIvyScript(ownContext, getConfigurationProperty("Event Typ"));
 linkId = (String)executeIvyScript(ownContext, getConfigurationProperty("Link-Id"));
 fieldValue = (String)executeIvyScript(ownContext, getConfigurationProperty("Feldwert"));

 // add your call here

 return out;
 }

Complete Code sample
public class MyOwnPiBean extends AbstractUserProcessExtension {

 /**
 * @see ch.ivyteam.ivy.process.extension.IUserProcessExtension#perform(ch.ivyteam.ivy.process.engine.IRequestId,
 * ch.ivyteam.ivy.scripting.objects.CompositeObject,
 * ch.ivyteam.ivy.scripting.language.IIvyScriptContext)
 */
 public CompositeObject perform(IRequestId requestId, CompositeObject in,
 IIvyScriptContext context) throws Exception {

 IIvyScriptContext ownContext;
 CompositeObject out;
 out = in.clone();
 ownContext = createOwnContext(context);

 String eventtyp = "";
 String linkId = "";
 String fieldValue = "";
 String user= "";

 StringTokenizer st = new StringTokenizer(getConfiguration(),"|");
 if(st.hasMoreElements())
 user= (String)executeIvyScript(context, st.nextElement().toString());
 if(st.hasMoreElements())
 eventtyp = (String)executeIvyScript(context, st.nextElement().toString());
 if(st.hasMoreElements())
 linkId = (String)executeIvyScript(context, st.nextElement().toString());
 if(st.hasMoreElements())
 fieldValue = (String)executeIvyScript(context, st.nextElement().toString());

 //do something with the values
 return out;
 }

 public static class Editor extends JPanel implements IProcessExtensionConfigurationEditorEx {
 private IProcessExtensionConfigurationEditorEnvironment env;
 private IIvyScriptEditor editorUser;
 private IIvyScriptEditor editorEventTyp;
 private IIvyScriptEditor editorLinkId;
 private IIvyScriptEditor editorFieldValue;

 /**
 * Constructor for the Editor object
 */
 public Editor() {
 super(new GridLayout(4,2));
 }

 /**
 * Sets the configuration
 *
 * @param config the configuration as an String */
 public void setConfiguration(String config) {
 StringTokenizer st = new StringTokenizer(config,"|");
 if(st.hasMoreElements())
 editorUser.setText(st.nextElement().toString());
 if(st.hasMoreElements())
 editorEventTyp.setText(st.nextElement().toString());
 if(st.hasMoreElements())
 editorLinkId.setText(st.nextElement().toString());
 if(st.hasMoreElements())
 editorFieldValue.setText(st.nextElement().toString());
 }

 /**
 * Gets the component attribute of the Editor object
 *
 * @return this
 */
 public Component getComponent() {
 return this;
 }

 /**

Process Modeling

149

 * Gets the configuration
 *
 * @return The configuration as an String
 */
 public String getConfiguration() {
 return editorUser.getText() + "|" + editorEventTyp.getText() + "|" +
 editorLinkId.getText() + "|" + editorFieldValue.getText() + "|";
 }

 /**
 * @return boolean
 */
 public boolean acceptInput() {
 return true;
 }

 public void setEnvironment(IProcessExtensionConfigurationEditorEnvironment env) {
 this.env = env;
 editorUser = env.createIvyScriptEditor(null,null, "String");
 editorEventTyp = env.createIvyScriptEditor(null,null, "String");
 editorLinkId = env.createIvyScriptEditor(null, null, "String");
 editorFieldValue = env.createIvyScriptEditor(null, null);

 add(new JLabel("User"));
 add(editorUser.getComponent());
 add(new JLabel("Event Typ"));
 add(editorEventTyp.getComponent());
 add(new JLabel("Link-Id"));
 add(editorLinkId.getComponent());
 add(new JLabel("Feldwert"));
 add(editorFieldValue.getComponent());

 }
 }
 }

Note

 The Note element is located in the Activity drawer of the process editor palette.

Element Details
The note element

Inscription

Tab Name

An Annotation enables comments to be inserted anywhere within a model for documentation purposes

Figure 2.81. The Name Tab

Process Modeling

150

Annotation The text of the annotation. This is displayed on the process diagram fro your documentation.

Comment In this text field the function of the element is described. This text appears as Tool Tip whenever
the mouse stays over the element.

Means/Documents This table lists the means being used and which documents are available at with location (given as
an URL).

Tip

In generated HTML reports, a link is inserted for these document references.

Web Service Process Start

 The WS Start element is located in the WS Process drawer of the process editor palette and only available in
web service processes.

Element Details
Each Web Service Start element will create a web service operation in the web service where it is located. It has input and
output parameters.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Start Tab

This tab is used to define the signature of the web service operation.

Figure 2.82. The Start Tab

Process Modeling

151

Start signature The name text field allows you to specify the name of the web service operation. This
is the name that will also appear in the generated WSDL and will be used to call the
web service operation.

Input parameters This table is used to define the input parameters of the operation. The list may be left
empty if the operation does not require any input parameters. To add a new parameter,
click the green plus icon and specify the name and type of the parameter.

Warning

Some restrictions apply to the definition of Web Service process input
parameters. Please follow the rules below:

Do not use the interface type Number as type for an input parameter.
Instead use concrete types like Integer or Double.

Do not use complex types that contain a List attribute as
input parameter (e.g. Employee with an attribute projects
of type List<Project>). Use a java.util.List (e.g.
java.util.List<Project>) as type for such attributes instead.

In both cases you can still map the incoming values to process attributes
of type Number or List<?> in the mapping section.

Mapping of input parameters The input parameters defined above are available as fields on the param variable. You
can assign the parameter values to the internal data fields in the table.

Note

The reason why you have to assign the incoming parameters to local data
is to keep the implementation independent from the declaration. By doing
so the implementation can be changed at a later point of time (rename
data, use different data types, etc.) while at the same time the web service
interface is kept stable. This has the effect that none of the clients of the
web service have to be changed/adapted after an internal data change.

Result Tab

This tab is used to define the return parameters of the operation.

Figure 2.83. The Result Tab

Output Parameters This table is used to define the output parameters of the operation. The list may be left
empty if the operation does not return any data. To add a new parameter, click the green
plus icon and specify the name and type of the parameter.

Mapping of process data For each defined output parameter you must now specify the value that will be returned.
In most cases, this is a process attribute. However you may specify any valid IvyScript
expression.

Web Service Tab

This tab is used to change the web service specific settings of the operation.

Process Modeling

152

Figure 2.84. The Web Service Tab

Web service The web service section shows the web service's name and authentication options. Click the
Configure... button to open the configuration dialog. See inscription mask of the web service
process for details.

Note

Since these settings are defined per web service and not per web service operation,
any changes here will have an impact on all the operations within the same process,
i.e. web service.

Tip

Use fully qualified class names to generate specific target
namespaces in the WSDL of your web service (e.g.
ch.ivyteam.svn.CustomerService as demonstrated on the screenshot
above will result targetNamespace="http://srv.ivyteam.ch/" in
your WSDL)

Responsible role You may specify a role that is required to call this start. If the start is invoked with a user not
owning the selected role, an error will occur. The error can be handled by a catching “Error
Start”.

Exception handling The exception handling allows your web service operation to throw a custom exception if your
process could not complete normally. When such an exception is thrown, no output parameters
are returned to the client.

After activating the exception handling, define the condition on which the exception should be
thrown and the message to be returned to the caller.

Task Tab

This tab defines information relevant to the task. The task created for a web service call will normally not appear in a task list
of a user. The values on this tab are therefore only relevant for analysing the finished tasks and not for the task list itself.

Process Modeling

153

Entry in Task List Defines the name and description of the task.

Priority Here you select the priority of the task.

Tab Task - Business

This tab allows to set additional information to categorize the task created. The values set on this tab are only informational
and have no effect on how this task is treated by Axon.ivy.

Business calendar

You can set the name of the business calendar that should be used for this task. In the context of this task ivy.cal will
return this business calendar regardless of what you've set for the case.

For more information about business calendar administration see the engine guide.

For more information about business calendar usage see the Public API of
ch.ivyteam.ivy.application.calendar.IDefaultBusinessCalendar.

Tab Task - Custom fields

This tab allows to set additional information for the task created. The values set on this tab are only informational and have
no effect on how this task is treated by Axon.ivy.

Case Tab

On this tab you can configure the Case created by this Web Service Process Start. See “Case Tab” in the Task Switch Gateway
element.

Customization
The Web Service endpoints are generated automatically in a Java file which contains JAX-WS annotations to define the Web
Service. If the default configuration does not fit your needs, the generated Java file can be managed and extended by the
developer.

The Java file is located in the folder [project]/src_wsproc/[fully-qualified-name].java and gets
interpreted by the CXF library (http://cxf.apache.org/). The file has to be moved to the src-folder of the project and has to
be in line with the configuration of the WS Start Elements of the process. The fully-qualified-name is defined in
the inscription mask of the process.

The Java file in the src-folder is under control of the Developer. When a WS Start element configuration changes, the change
has to be adapted manually in the Java file.

User Dialog Start

 The User Dialog Start element is located in the User Dialog drawer of the process editor palette.

Element Details
The User Dialog Start element is used to map a Start Method (as declared in the Interface Editor) to the process that is started
by this element and that implements the Start Method.

The element allows to initialize internal data of the User Dialog from the input parameters of the call and to define return
values from process data (to be returned when the User Dialog finishes).

http://cxf.apache.org/

Process Modeling

154

Note

With Rich Dialogs on the User Dialog Start, embedded inner Rich User Dialogs are initialized by calling
individual start methods recursively.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Start Tab

This tab is used to select the signature of the Start Method.

Figure 2.85. The Start Tab

Start The drop down list allows you to select one of the start methods declared in the interface of the User Dialog. Only
methods that have not yet been mapped (i.e. assigned to start elements) are available for selection.

Tip

If the drop down list is empty, then all methods have already been assigned. The additional start
element is therefore useless and you can delete it.

Output Tab

This tab is used to map the incoming call parameters to the User Dialog's internal process data.

Process Modeling

155

Figure 2.86. The Output Tab

Call Parameters The call parameters are available as fields on a param variable. You can assign the
parameter values to the internal data fields in the table or initialize them with the
scripting field below the table. If both the table and the scripting area are used for
assignment, then the table's assignments will be executed first.

Note

The reason why you have to assign the incoming parameters to local
data is to keep the implementation independent from the declaration. The
mapping of parameters serves as a flexible adapter mechanism: By doing
so the implementation can be changed at a later point of time (rename
data, use different data types, etc.) while at the same time the interface is
kept stable. This has the effect that none of the clients of the Rich Dialog
have to be changed/adapted after an internal data change.

Tip

The variable panel is not available on the Start Method element for
technical reasons: At the execution time of this element the panel is
not yet completely initialized. Therefore access to it's components is
considered potentially dangerous and prohibited on purpose.

Temporary disabled UI events
(only available for Rich Dialogs)

If selected, all UI events (like SELECTION_CHANGED, VALUE_CHANGED or
LIST_SELECTION) are disabled until the start-process reaches its end-step. All
disabled events are listed in the enumeration UiEventKind.

• Other rich dialogs (implicitly inner Rich Dialogs) are not affected.

• The data binding will be executed before the re-enablement.

Note

You have the possibility to disable UI events permanently
or temporarily by the API. See the public API,

Process Modeling

156

ivy.rd.disableUiEvents(), ivy.rd.enableUiEvents()
and ivy.rd.disabeleUiEventsTemporary().

Tip

In most cases the panel data (like combo boxes etc.) are fully initialized
on startup, for example when you get the whole data from a Web Service
etc. But when widget values should be changed when another widget
changes, e.g. on value change. In such cases the events could be disabled
to speedup the startup behaviour of a panel, because the panel does not
have to refresh its data again for each dependency event on the panel at
startup.

Embedded Rich Dialogs Tab (only available with Rich Dialogs)

This tab is used to initialize the embedded Rich Dialogs within a Rich Dialog.

Figure 2.87. The Embedded Rich Dialogs Tab

Embedded Rich Dialogs The embedded Rich Dialog instances can be initialized individually. The column on the left
shows all embedded Rich Dialogs that are located on the configured Rich Dialog's panel.
For each of them an individual Start Method may be chosen, just as described for the Rich
Dialog Element.

Tip

In the context of this tab the param variable is reserved for the arguments of
the called start method for this Rich Dialog.

If you want to use incoming call parameters values as arguments for the
start methods of embedded Rich Dialogs then you can use the callParam
variable as demonstrated above.

Process Modeling

157

Result Tab

This tab is used to define the return values of the User Dialog.

Figure 2.88. The Result Tab

Result Return values can be defined according to the declared return types that the mapped Start Method specifies. The
table on this tab shows a result variable which has fields for each declared return type (none, if the return type
is void).

You can define the returned result values either in the table or by using the IvyScript field below it. The assignments
of the table will be executed before the script.

Tip

The defined result object will become available to the caller on the Output tab of the invoking User
Dialog Element once the User Dialog has finished.

User Dialog Method Start

 The User Dialog Method Start element is located in the Rich Dialog drawer of the Process editor palette.

Element Details
The User Dialog method element is used to map a User Dialog method (as declared on the User Dialog's interface) to a process
that implements the functionality of that method.

The element allows to set internal data of the User Dialog from the input parameters of the method call and to define return
values either from process data or by calculation.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Process Modeling

158

Method Tab

This tab is used to select the signature of the User Dialog Method that is implemented by this element's process.

Figure 2.89. The Method Tab

Method The drop down list allows you to select one of the regular methods declared in the
interface of the User Dialog. Only methods that have not yet been mapped (i.e. assigned
to method start elements) are available for selection.

Note

If the drop down list is empty, then all methods have already been
assigned. The additional method element is therefore useless and you can
delete it.

Temporary disabled UI events If selected, all UI events (like SELECTION_CHANGED, VALUE_CHANGED or
LIST_SELECTION) are disabled until the method-process reaches its end-step. All
disabled events are listed in the enumeration UiEventKind.

• Other User Dialogs (implicitly inner RD's) are not affected.

• The data binding will be executed before the re-enablement.

Note

You have the possibility to disable UI events permanently
or temporarily by the API. See the public API,
ivy.rd.disableUiEvents(), ivy.rd.enableUiEvents()
and ivy.rd.disabeleUiEventsTemporary().

Output Tab

This tab is used to assign the parameter values to the User Dialog's internal data fields.

Figure 2.90. The Output Tab

Process Modeling

159

Mapping Both the table's assignments and any scripting code below the table will be executed at the time of the method
call. The table's statements will be executed before the scripting block.

The input parameters are available as fields on a param variable (none if the chosen method does not declare
any input parameters). You can assign values to any internal data fields, the assignments do not have to be based
on param.

Result Tab

This tab is used to define the values that will be returned to the caller when the method process finishes.

Figure 2.91. The Result Tab

Method The method's declared return parameters are shown in the table as fields of a result variable (none if the method's
return value is void).

Both the table's assignments and any scripting code below the table will be executed when the method process
reaches an User Dialog End Element. The table's statements will be executed before the scripting block.

User Dialog Event Start

 The User Dialog Event Start element is located in the Rich Dialog drawer of the process editor palette.

Element Details
The RD Event Start element represents a process start in the User Dialog logic that is triggered by means of UI event mapping.
Events that are fired either by widgets or by embedded Rich Dialogs when the user interacts with the UI may result in the
execution of UI processes, if a matching event mapping exists.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Process Modeling

160

Note

With Rich Dialogs, additionally to the regular variables of the Output Tab you have the following variables
available:

event This variable contains an object of the type java.util.EventObject that caused the RD event
process to start.

Depending on the type of event you may cast this object into different more specific event types. For
example to ch.ivyteam.ivy.richdialog.exec.RdEvent if it is an event that was caused
by an embedded User Dialog.

panel This variable contains this User Dialogs panel instance which you can use to set or query any
widget properties. It is, however, recommended to use data binding instead of accessing/setting panel
properties directly.

Code Tab

On this tab you can execute any IvyScript, e.g. to modify internal data or to define output data of this element. See Code
Tab for a more detailed description.

Tip

The entered code will be executed after the execution of the output tab. Although this may seem a bit counter-
intuitive at first, you should simply regard the code tab as an alternative way of defining output data. The general
recommendation is to use the output table to define simple assignments and the code tab if more extensive
scripting is needed to calculate data.

User Dialog Broadcast Start

 The User Dialog Broadcast Start element is located in the User Dialog drawer of the process editor
palette. It is only available in a Rich Dialog.

Element Details

The Broadcast Start element represents a process start in the Rich Dialog logic that is invoked when an accepted broadcast
is received by the Rich Dialog (as declared on the Rich Dialog's interface).

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Broadcast Tab

This tab is used to select the accepted broadcast event that will trigger this element's process.

Process Modeling

161

Figure 2.92. The Broadcast Tab

Broadcast The drop down list allows you to select one of the accepted broadcasts declared in the interface of the Rich
Dialog. Only broadcasts that have not yet been mapped (i.e. assigned to broadcast start elements) are available
for selection.

Tip

If the drop down list is empty, then all accepted broadcasts have already been assigned. The
additional broadcast element is therefore useless and you can delete it.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

Additionally to the regular variables of the Output Tab you have the following variables available:

event This variable contains an object of the type java.util.EventObject that caused the RD event
process to start.

You can cast the event object to the type ch.ivyteam.ivy.richdialog.exec.RdEvent in
order to access the optional event parameter object that may have been passed along with the event.

panel This variable contains this Rich Dialogs panel instance which you can use to set or query any
widget properties. It is, however, recommended to use data binding instead of accessing/setting panel
properties directly. gen

User Dialog Script Step

 The User Dialog Script Step element is located in the User Dialog drawer of the process editor palette.

Element Details
With this element you can perform any transformation of the process data within the User Dialog. In a Rich Dialog you have
also access to the panel object.

Warning

It is strongly recommended to use the dedicated process elements if you intend to use specific functionality and/
or technology (such as invoking Web Services, querying Databases and so on) as these elements encapsulate
their use and handle exceptions internally.

Process Modeling

162

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Output Tab

On this tab you can configure the output of the element (i.e. the data that leaves the element). See Output Tab for a more
detailed description.

Note

In a Rich Dialog, additionally to the regular variables of the Output Tab you have the following variables
available:

panel This variable contains this User Dialogs panel instance which you can use to set or query any
widget properties. It is, however, recommended to use data binding instead of accessing/setting panel
properties directly.

Panel Tab (only available with Rich Dialogs)

On this tab you can modify any properties of the Rich Dialog's panel. See Panel Tab for a more detailed description.

Tip

The modifications on the panel will be performed after the execution of the output tab and before the code tab.

Code Tab

On this tab you can execute any script, e.g. to modify internal data or to define output data of this element. See Code Tab
for a more detailed description.

Tip

The entered code will be executed after the execution of the output tab and the panel tab. Although this may
seem a bit counter-intuitive at first, you should simply regard the code tab as an alternative way of defining
output data. The general recommendation is to use the output table to define simple assignments and the code
tab if more extensive scripting is needed to calculate data.

User Dialog Fire Event Step

 The User Dialog Fire Event element is located in the User Dialog drawer of the process editor palette.
It is only available with Rich Dialogs.

Element Details
This element is used to fire events that are declared on the Rich Dialog's interface during process execution.

Process Modeling

163

The range (i.e. the potential receivers) of the fired event is defined by the scope of the event and is part of the event's declaration
(see there to learn about what types of scope that are available). A fired event may carry an optional parameter which can
be retrieved by the receiving event handlers.

Events can be received in two ways:

If the fired event is a broadcast event then other Rich Dialogs may declare and implement an accepted broadcast that matches
the fired event's signature.

If the event is a regular event (i.e. for subscribers only) then an outer Rich Dialog may map the fired event onto one of it's
Rich Dialog event start elements using the event mapping mechanism.

Tip

You can also fire Rich Dialog events programmatically by invoking the fireXYZ(...) methods on the Rich
Dialog panel (advanced visibility). It is, however, recommended to use the fire event element instead due to the
declarative nature of the element inside the process.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

Event Tab

This tab is used to select the Rich Dialog event that should be fired.

Figure 2.93. The Event Tab

Event To Fire The drop down list allows you to select one of the events that the Rich Dialog is able to fire
(as declared in the interface of the Rich Dialog). The list shows all available events with
their name, type of event object and scope.

Event Parameter Value Depending on the signature of the selected event, an optional event parameter may be
attached to the event. The table in this section can be used to assign values to the fields of
the specified parameter type (if available).

Leave the table empty if you don't want to set an event parameter (in which case the
parameter value will stay null).

Warning

It is strongly recommended to use only immutable objects as event parameter.
During the distribution of the fired event all receivers can access the parameter

Process Modeling

164

object. If it is mutable and can thus be changed by one receiver then the object
will contain different data when it is accessed by the next receiver, which may
lead to unpredictable behavior.

User Dialog UI Synchronization

 The User Dialog UI Synchronization element is located in the User Dialog drawer of the process editor
palette. It is only available with Rich Dialogs.

Element Details
This element can be used to update the user interface on the client during a long running process on the server.

Problem: If a long running UI process is started on the server (e.g. by clicking on a button) then the user interface on the
client will not be updated until the process on the server has finished, because the request will not return to the client until
then. It doesn't matter whether the process performs changes on the UI (e.g. by setting a text on a label or by updating the
value of a progress bar) during it's execution, those changes will not be transmitted to the client until the request returns.

Solution: If you insert the UI Synchronization element at some points inside your long running process then the changes that
were set on the UI are transmitted to the client. The currently running request will temporarily return, update the client's user
interface, and then immediately come back and resume the long running process.

Figure 2.94. Example usage of the UI Synchronization element

Note

Use the data binding for UI update. Both an upbinding (i.e. Data-to-UI) and a downbinding (i.e. UI-to-Data)
will be executed automatically every time when a Rich Dialog UI Synchronization element is executed.

Warning

Do not use the UI Synchronization element inside a Rich Dialog start method.

This will not work for technical reasons, because the initialization of the Rich Dialog will not have been
completed at this point of time. If you want to execute a long running process immediately after a Rich Dialog
is started then you should move this logic to an event process.

Process Modeling

165

This process should then be triggered by invoking a hidden button (i.e. a button on the panel with the property
visible = false) with ivy.rd.clickDeferred(hiddenButton). The button will automatically be
clicked on the client as soon as the current request has ended, thus immediately sending another request to the
server. The following figure illustrates this:

Have a look at the UI Refresh demo (particularly the Progress Dialog part) in the IvyDemos project for an
example on how to do this.

Figure 2.95. Example usage of ivy.rd.clickDeferred(hiddenButton)

Explanation: [1] Start method of Rich Dialog initializes the Rich Dialog. At the end of the init method a call to
ivy.rd.clickDeferred(..) is used to schedule the clicking of a hidden button at a later point of time.
[2] Rich Dialog is uploaded to the client and displayed. [3] Immediately after the Rich Dialog becomes visible,
the scheduled click on the hidden button is executed and triggers another server round trip. [4] The post_init
event handler (which is associated with the hidden button) is executed and performs the potentially long running
task, where the UI Synchronization element may safely be used.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

User Dialog Process End

 The User Dialog Process End element is located in the User Dialog drawer of the process editor palette.

Element Details
This element is used to terminate any User Dialog processes inside the User Dialog's logic.

Note

An up-binding (i.e. data-to-panel) will be executed automatically every time when a User Dialog process end
element is executed.

Process Modeling

166

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

User Dialog Exit End

 The User Dialog Exit End element is located in the Rich Dialog drawer of the process editor palette.

Element Details
This element is used to terminate the execution of a User Dialog.

If process execution reaches this element then the User Dialog's panel is immediately removed from the display container that
it resides in. The result tab code of the originally invoked start method is executed and the calculated results are passed back
to the User Dialog element which called the User Dialog. Afterwards the calling process continues.

Note

If the User Dialog was called asynchronously then the User Dialog's panel will simply be removed from the UI
and the calculated result value of the earlier invoked start method will be ignored.

Inscription

Name Tab

This tab is included in the mask of all process elements and contains the name and a description of the element. See Name
Tab for a more detailed description.

BPMN Activity Elements
The BPMN Activity drawer contains elements, that can be used to design a process at a high level, where details of the technical
implementation are hidden inside the element itself. Thus BPMN Activities behave similar to a Embedded Sub, but their
purpose is different.

They are intensively used by the importer of Axon.ivy Modeler Processes.

Available BPMN Activity Elements

Generic

An unspecific activity.

User

Indicates an activity that implies execution by the user.

Process Modeling

167

Manual

Indicates an activity that implies execution without assistance of IT means.

Script

Indicates an activity that implies execution inside the process engine itself.

Receive

Indicates an activity that implies reception of a message.

Rule

Indicates an activity where a business rule is evaluated.

Send

Indicates an activity that implies sending of a message.

Service

Indicates an activity that implies calling an automated function.

168

Chapter 3. Data Modeling
Data Classes

This chapter deals with the Axon.ivy Data Classes. In general, a Data Class holds the data that flows through your business
or User Dialog process. You can build complex data structures out of your Data Classes. Use composition to split up your
data if the amount of your data is getting bigger.

Types of Data Classes
There are four kinds of Data Classes in Axon.ivy.

Global Data Classes The global Data Classes are placed in the Data Class node in your project tree. They
are accessible all over your project and the extending projects.

User Dialog Data Class Each User Dialog has its own Data Class. This class holds the data that flows through
your User Dialog processes. In your User Dialog Data Class it is possible to define
fields with a type of a global Data Classes. The User Dialog Data Class is not visible
at any other place except the User Dialog Processes.

Web Service (WS) Data Classes The Web Service Data Classes are automatically generated if you define a Web Service
configuration. The Web Service Data Classes are as well as the global Data Classes
accessible from all over the project and the extending projects. Use this Data Classes
to communicate with your Web Services.

Entity Classes Entity Classes are like Global Data Classes but with additional information where and
how to store the data of a class and it's attributes to a relational database. See chapter
Entity Classes for more details.

Tip

The properties of a Rich Dialog's data class can be dragged from the Ivy Outline View and dropped onto a widget
on the Rich Dialog's panel to add a data binding.

New Data Class Wizard

Overview
The New Data Class wizard lets you create a new global Data Class.

Figure 3.1. The New Data Class Wizard

Data Modeling

169

Accessibility
File > New > Data Class

Features
Project Name Chose the name of the project the new Data Class should belong to.

Namespace Chose a namespace for your Data Class. The name space lets you create a structure to organise your
data. Use the dot character '.' to separate the folders from each other. The namespace will be visible
in the Axon.ivy project tree.

Data Class Name Enter the name of your Data Class. Do not use the names twice in your project, its getting confusing
if you do so.

Data Class Editor

Overview
The Axon.ivy Data Class editor lets you configure the process data objects of Axon.ivy. The process data is the data that
"flows" through your processes. It represents the state of the respective process.

Use this editor to add new data fields to your process data class, to change the type of a field or to document your Data Class
or Data Class Field.

Figure 3.2. The Data Class Editor

Accessibility
1. Axon.ivy Project Tree > double click on a Data Class entry in the tree.

2. New > Data Class > then the editor opens if the class was created successfully

Attributes
The attributes table specifies the Data Class contents.

Comment Use this field to document your data class

Annotations Annotations can be set to control certain behaviours:

Data Modeling

170

BusinessCaseData Objects of the data class are stored in the Business Data Store
(ivy.repo) in the context of the current business case. See Business
Case Data for more information.

Table actions Adds a new attribute to the table. Alternatively the new attributes can be added by clicking
on an empty row.

Deletes the selected attribute.

Re-orders the selected attributes. The order influences just the presentation and has no
logic implication.

 Toggles the value change breakpoint for selected attribute. The attribute icon shows that
a breakpoint is installed on an attribute. More information about value change breakpoints can
be found in chapter Breakpoints.

Name column Enter the name of your attribute. The name should not contain any special characters or spaces.

Tip

You may already specify the type of the attribute here by adding a colon ':' to the
attribute name, followed by the desired type (e.g. myDateAttribute:Date).

The entered type is used as search filter. The following examples using a data or
java class with the name ch.ivyteam.demo.Person:

• person:Person results in person, ch.ivyteam.demo.Person.

• personList:List<Person> results in personList,
List<ch.ivyteam.demo.Person>.

• javaPersonList:java.u.List<Person> results in person,
java.util.List<ch.ivyteam.demo.Person> (Here a prefix of the
package name java.u is used as filter instead of the full qualified name
java.util).

• timestamp:Timestamp results in displaying the type selection dialog
because there are mutliple types matching the type name Timestamp.

Type column Enter the type of the attribute or press the to bring up the data type selection dialog.

Persistent column Decide if the data should be persistent between a task switch. If the data is not set to be persistent,
then you loose all information if the execution of the process passes a task switch process element.

Note

This flag can be removed on attributes if the value is stored in the business data
repository or using persistence or the data is only used temporary within a task.

Attribute refactoring

The Data Class editor supports Data Class attributes refactoring.

Data Modeling

171

Combine into new Data Class refactoring

Over time the amount of attributes in a Data Class may become excessive. This decreases the maintainability and reusability
of your process logic. Therefore the editor allows you to extract multiple attributes from an existing Data Class into a new
Data Class. The extracted attributes will be replaced with a delegate field for the new Data Class.

E.g. if you have a Data Class that describes a person you could extract the attributes that belong to the address part into an
extra address Data Class.

Before refactoring After refactoring

Start Refactoring

Select the attributes to extract in the Data Class attribute table. Open the context menu of the selected attributes. Choose
Combine to Data Class to open the refactoring wizard.

Wizard Page 1 - Define the new Data Class

The first refactoring wizard page lets you define the location and name of the Data Class.

 The checkbox 'Include non type safe refactorings within
Web Pages (CMS)' enables the refactoring of JSP (macro) expressions within Web Pages. But Web Page modifications are
not type safe. This means that attributes that are collected as change candidates may be wrong. So these changes should be
inspected in detail in the refactoring preview (page 2) and tested manually.

Wizard Page 2 - Preview modifications

Data Modeling

172

The second page previews all changes that will be applied to your artifacts. You can inspect most of the changes within the
textual compare view on the lower part of the page.

The refactoring will modify all programmatic references to the attributes. This means that statements written in Java, ivyScript,
JSP or El-Expressions could be changed by this refactoring.

Business Data Store
The Business Data feature allows to store and load business data in a built-in repository without defining a schema. Compared
to other features like database steps and JPA no additional database, database connection, schema or tables are needed

The business data structure can be defined by declaring normal data classes. When storing a business data object all objects
that are referenced from the root object are stored as well. Loading a business data object will recreate the whole object tree
again. The data is stored in a schema less JSON based data format in the ivy standard System database. This allows to add
fields to data classes over time and still be able to load old business data without migration.

Moreover, the business data feature allows to search the stored data by defining field based filters.

Business Data Concept
Basically the Business Data Store implements a document store. Beside the stored value, the repository stores additional
information about the Business Data, like an identifier, a version and the creation / update date.

A value data class can have fields of complex types, which allows to create an object hierarchy or tree. The storage mechanism
can handle recursions and will respect objects of same instances. So if the same instance of an object is referenced in a field
and in a list - after storing and loading the value - the loaded value will have the identical structure, the field and the list entry
will reference the same instance.

Identity

A Business Data value is identified by an identifier given by the repository and its data class.

A unique id is generated if a Business Data value is stored the first time. If there is a field of type String with the name id
in the Business Data class, the generated id will be stored into this field too.

It is also possible to use your own id if you set the id to the Business Data value before saving it for the first time.

Business Case Data

The handling of identifiers of Business Data values is complex because you have to manage the identifiers in the process data
manually. Therefore the Business Data Store can store data in the context of a business case. You can activate this by annotating

Data Modeling

173

a data class with the @BusinessCaseData annotation. On the Data Class Editor simply check the BusinessCaseData
checkbox in the Annotations section. Now, all values of the annotated data class are automatically associated with the current
business case. You can use the get method to load the value associated with the current business case. If no value is associated
it simply returns a new object.

Migrate data classes

It is allowed to add and remove fields in the value data class hierarchy. New fields will be initialized with null, when old
values get loaded. Deleted fields will no longer be available. The information will still be persisted until the value gets stored
with the new information - which will override the old information.

Optimistic locking

Business Data supports optimistic locking. It is possible to check if the current version is up to date and save only if this is
the case. It is possible to update a value partially so that multiple participant can work on different parts of the same Business
Data value. See the Concurrent Modification demo in the WorkflowDemos project for a practical example.

Business Data Usage
The Business Data feature methods like get, save, find and delete are accessible under ivy.repo in IvyScript.

Associate value with the business case (BusinessCaseData context)

Annotate the main data class of the business case with the @BusinessCaseData annotation:

@BusinessCaseData
public class BusinessCaseDossier
{
...

Get (load or create), modify and save a dossier value in the context of the current business case:

BusinessCaseDossier dossier = ivy.repo.get(BusinessCaseDossier.class);
dossier.getPerson().setLastName("Polo");
ivy.repo.save(dossier);

Note, that the method get either loads the dossier if there is already a dossier associated with the current business case or
creates a new dossier.

Store (without BusinessCaseData context)

Create and save:

Dossier dossier = ...
out.businessDataId = ivy.repo.save(dossier).getId();

Tip

It is recommended to only store the Id of the business value in the process data. After a Task Switch you must
load the business data value from the repo with the stored Id. This is required, because the business data repo
does not keep the reference to the instance on the Task Switch.

Load (without BusinessCaseData context)

Load, modify and save:

Dossier storedDossier = ivy.repo.find(in.businessDataId, Dossier.class);

Data Modeling

174

storedDossier.getPerson().setLastName("Polo");
ivy.repo.save(storedDossier);

Search

The search capabilities of the Business Data Store are based on Elasticsearch and therefore fast and powerful.

There is a fluent API to search stored business data. The API supports filtering, ordering and limiting of the results:

List<Dossier> result = ivy.repo.search(Dossier.class)
 .allFields().containsAnyWords("Polo Columbus")
 .execute()
 .getAll();

Also fuzzy search and search engine like query strings are supported:

List<Dossier> result = repo.search(Dossier.class)
 .score()
 .allTextFields()
 .query("Baldwin~1 -Alec")
 .execute()
 .getAll();

Warning

By default the search result is limited to 10 entries. Use the method limit if you want to get more than 10
entries.

Store with own Id

Create and save with own Id:

Dossier dossier = ...
String yourId = ... // generate your own id, be sure it is unique!
dosser.id = yourId; // set your id to the Business Data value
ivy.repo.save(dossier);

ivy.repo.find(yourId, Dossier.class) // get your Business Data value

Warning

Be aware that the id can not be changed later and the maximum length of the identifier is 100 characters.

Samples

The WorkflowDemos sample project of the Axon.ivy Designer contains examples on how to use the Business Data Store.

See Public API of BusinessDataRepository for more code samples.

Business Data Limitations
Size The Business Data store is not designed for storing huge binary objects like PDF's.

Types The ivy scripting types XML, and Tree are not serializable.

Collection types like an ArrayList can be stored in a field, but not as root object. Always
use a simple DataClass or plain old Java objects as root object to store and load in the
repository.

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/guide/current/fuzziness.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-simple-query-string-query.html

Data Modeling

175

Public API objects like IUser, ITask or similar should not be stored into the Business
Data repository. As workaround its better to store the Id of a Task or User and re-load it via
this identifier.

The type of a stored field should never be changed (E.g. from Number to String). The
already stored data de-serialization could fail and more likely Business Data with the new
type can no longer be found via the search API as the search index is strongly typed.

Project Dependencies When using the same Business Data value type in multiple projects 'a' and 'b' it is best to
define the data classes for the business data in a own project 'base'. Then define a dependency
from projects 'a' and 'b' to project 'base'.

Warning

If you use an object of a type that is defined in project 'a' inside the business
data value (e.g. add it to a list) then the business data value cannot be loaded in
project 'b'. This is because project 'b' is not dependent to project 'a' and therefore
cannot load objects of classes that are defined in project 'a'.

Customization

The BusinessData store serializes Java objects to schema-less JSON by using the Jackson. Ivy DataClasses are predestinated to
be serialized with Jackson. However, Jackson is able to store and load any Java object hierarchy. The following customizations
could help to store your special plain old Java objects, which might can not be serialized by default.

Warning

Jackson is not only used for BusinessData serialization, but also to provide and consume “REST Services”. If
you customize the serialization of Jackson, it will very likely also affect the serialization of Java objects which
are used as input or return parameter of any REST service. If a serialization behaviour must only be applied for
the BusinessData serialization, declare it as “Own module”.

Custom constructor

The de-serializer expects an empty default constructor to re-create a Java object. If you have a non default constructor (with
parameters) or a factory method to create instances of your object, Jackson annotations are required so that the de-serializer
knows how to re-create the object.

For a sample see: https://github.com/FasterXML/jackson-databind/#annotations-using-custom-constructor

Field without get/setter

The ObjectMapper will only store fields as JSON which are public accessible either by getter method or its field visibility.
The re-creation of such field will fail if no setter is public accessible. Via annotations either the serialization of this field can
be avoided or the re-creation can be enabled.

Avoid the serialization of a field:

public class MyCar{
 private List<Wheel> wheels;

 @JsonIgnore
 public List<Wheel> getWheels(){
 return wheels;
 }
}

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson-databind/#annotations-using-custom-constructor

Data Modeling

176

Enable re-creation of a setter-less field:

public class MyCar{
 @JsonProperty
 private List<Wheel> wheels;

 public List<Wheel> getWheels(){
 return wheels;
 }
}

Own module

If simple annotations do not solve a serialization task, it's possible to write a completely custom serializer and de-serializer for
Jackson. To do so implement a class that extends com.fasterxml.jackson.databind.module.SimpleModule
and add your customization code into it. Register the class via SPI: create a file META-INF/services/
com.fasterxml.jackson.databind.Module and store the qualified name of your module implementation in this
file.

However, if you need to serialize instances of a popular library there could already be a Jackson module available that handles
its serialization. See https://github.com/FasterXML/jackson#third-party-datatype-modules

If a module is already public available, simply add its JAR to the classpath of your project.

Persistence
This chapter introduces the Persistence Configuration and the Persistence API of Axon.ivy. The persistence framework is
based on the Java Persistence API, aka JPA) and provides support for storing and loading business objects from and to a
database in an easy way.

In order to use automated persistence in your business or User Dialog processes you need to define some Entity Classes first.
An entity class is similar to a data class (i.e. a business object) but holds additional information that is necessary to map the
class to a database table and it's attributes to database columns.

Once you have created entity classes, you need to define at least one persistence unit configuration. A persistence unit is
responsible for managing all or a subset of your entity classes and defines the database where those entities are stored. Once
you have configured one or more persistence units you can use them in your process steps with the Persistence API to load/
update entity objects directly from the database or save/update them to the database.

Entity Classes
Entity Classes are like global Data Classes but with additional information where and how to store the data of a class and it's
attributes to a relational database. An Entity Class is mapped directly to a database table and the attributes of an Entity Class
are mapped directly to the fields of a database table. Therefore the database schema can be generated directly out of an Entity
Class. It is possible to load, save, and update entity objects with the Persistence API.

Entity Classes are created with the New Entity Class Wizard and can be edited afterwards in the Entity Class Editor. Both of
those are similar to the wizard and editor for regular Data Classes, but allow to specify additional settings, that are necessary
for automated persistence.

New Entity Class Wizard

Overview
The New Entity Class wizard lets you create a new global Entity Class.

https://github.com/FasterXML/jackson#third-party-datatype-modules
http://en.wikipedia.org/wiki/Java_Persistence_API

Data Modeling

177

Figure 3.3. The New Entity Class Wizard

Accessibility

File > New > Entity Class

Features

Project Name Chose the name of the project the new Entity Class should belong to.

Namespace Chose a namespace for your Entity Class. The name space lets you create a structure to
organise your data. Use the dot character '.' to separate the folders from each other. The
namespace will be visible in the Axon.ivy project tree.

Entity Class Name Enter the name of your Entity Class. Do not use the names twice in your project, its getting
confusing if you do so.

Entity DB Table Name Enter the name of the database table name of your Entity Class. If empty the name of your
Entity Class is used. This name is used if the database table of this Entity Class is generated.

Entity Class Editor

Overview

The Axon.ivy Entity Class editor lets you configure the process data objects of Axon.ivy similar to the Data Class Editor. The
process data is the data that "flows" through your processes. Additionally an Entity Class has information where and how to
store the data of a class and it's attributes to a relational database.

Use this editor to add new data fields to your Entity Class, to change the type of a field or to document your Entity Class
or Entity Class Fields.

Accessibility

Axon.ivy Project Tree > double click on a Entity Class entry in the tree.

New > Entity Class > then the editor opens if the class was created successfully

Data Modeling

178

Features

Section Class Comment

Enter your text here to describe in prose what kind of data your Entity Class represents.

Section Attributes

Enter a list of attributes into the table. Use the icon to add a new attribute or just click on the next empty cell in the "Name"
column of the table.

If you want to reorder your entries in the table, then you can use the icons to do so. The order influences just the
presentation and has no logic implication.

Use the icon to toggle the value change breakpoint for the currently selected attribute. The attribute icon shows that a
breakpoint is installed on a attribute. More information about value change breakpoints can be found in chapter Breakpoints.

Name Enter the name of your attribute. The name should not contain any special characters or spaces.

Tip

You may already specify the type of the attribute here by adding a colon ':' to the attribute
name, followed by desired type (e.g. myDateAttribute:Date). When only adding a colon to
the name without a type, the data type selection dialog will appear.

Type Enter the type of the attribute (fully qualified) or press the to bring up the data type selection dialog.

DB Field The name of the field in the database table of this attribute. If you generate the database from this Entity
Class for this attribute the DB field name is used as database field.

Persistent Decide if the data should be saved in the database if you use the persistence API and if the data should be
persistent between a task switch. If the data is not set to be persistent, then you loose all information if the
execution of the process passes a task switch process element.

Length You can specify the length of the field in the database. This can only specified if the type is a String,
BigDecimal or BigInteger. The default length for string fields is 255 and for decimal fields 19,2 on the
database. Changes of the length has only an effect if the database schema is created new.

Properties id Specifies the primary key field of an entity. Every Entity Class must have exactly
one primary key.

generated Specifies if the primary key should be generated automatically.

not nullable Whether the database column is not nullable.

unique Whether the field should be a unique key in the database.

not updateable Whether the column is not included in SQL UPDATE statements generated by the
persistence provider.

not insertable Whether the column is not included in SQL INSERT statements generated by the
persistence provider.

version Specifies the version field of an entity that serves as its optimistic lock value. The
version is used to ensure integrity when performing the merge operation.

Data Modeling

179

Association Defines the association to another Entity Class. The actual configuration is done in the embedded
Association Editor.

Comment Describe the means of your attribute here.

Association Editor

Defines the association to another Entity Class and are only allowed to them and not other types of classes.

Association

ONE_TO_ONE Defines a one to one (1:1 on the database) association to another Entity Class. Can only be used if the type
of the attribute is an Entity Class.

MANY_TO_ONE Defines a many to one (n:1 on the database) association to another Entity Class. Can only be used if the
type of the attribute is a List or Set of an Entity Class. The inverse association of a MANY_TO_ONE is
a ONE_TO_MANY association.

ONE_TO_MANY Defines a one to many (1:n on the database) association to another Entity Class. Can only be used if the
type of the attribute is a List or Set of an Entity Class. This type of association needs always a mapped by
specification, because this is always the inverse side of an MANY_TO_ONE association.

Cascade

Defines the cascadable operations which are propagated to the associated Entity. E.g. if persist is enabled then the associated
object will be persisted automatically if an instance of this class is persisted.

persist If enabled the associated object is persisted automatically if an instance of the class is persisted. See persist
operation.

merge If enabled the associated object is merged automatically if an instance of the class is merged. See merge operation.

remove If enabled the associated object is removed automatically if an instance of the class is removed. See remove
operation.

refresh If enabled the associated object is refreshed automatically if an instance of the class is refreshed. See refresh
operation.

Mapped by

The field that owns the relationship on the specified type which must be an Entity Class. This element is only specified on
the inverse (non-owning) side of the association. Mapped by can only be used for ONE_TO_ONE and ONE_TO_MANY
associations. The inverse side of the association must be also the inverse association (ONE_TO_ONE inverse ONE_TO_ONE,
ONE_TO_MANY inverse MANY_TO_ONE)

Data Modeling

180

Orphans

If orphans remove is enabled and an entity that is the target of the relationship is removed from the relationship (either by
removal from the collection or by setting the relationship to null), the remove operation will be applied to the entity being
orphaned. If the entity being orphaned is a detached, new,or removed entity, the semantics do not apply.

If orphan remove is enabled and the remove operation is applied to the source entity, the remove operation will be propagated
as defined in the cascade section.

The remove operation is applied at the time of the flush operation. The orphans removal functionality is intended for entities
that are privately "owned" by their parent entity.

Example:

A 'Basket' entity holds a list of 'Product' entities. What happens if basket.getProducts().remove(..) is called?

• orphan remove enabled: the product is removed from the list of referenced products even if the entity is reloaded or
refreshed.

• orphan remove disabled: the product stays in the list of referenced products if the entity is reloaded or refreshed.

Persistence Configuration Editor

Overview

The Persistence Configuration Editor lets you configure the persistence units you use in your project and the extending
projects.

Usually you only need a single persistence unit that manages all of your project's entity data classes. In this case you can
simply create a new persistence unit, associate it with a data source (i.e. data base) and you're done. All of the project's entity
classes will then automatically be managed by this unit.

However, if you wish to do so, you can divide your entity data classes into subsets and manage each subset through an
individual persistence unit. In this case you need to specify multiple persistence units and then define an explicit list of
managed entity classes for each unit.

Warning

Although it is theoretically possible to have the same entity class managed by two or more persistence units, you
should be aware of the consequences. Once you have generated/attached an object of a specific class through a
specific persistence unit, you must ensure that it is managed uniquely by that unit afterwards.

Example: Assume that you have two different objects of the same entity class, e.g. Person, generated
through different persistence units, e.g. employee through employee_unit and customer through
customer_unit. In this case you must absolutely avoid to mix persistence units and objects. For the
above example, handing over employee to customer_unit (or customer to employee_unit) will
consequently result in errors.

Data Modeling

181

Figure 3.4. The Persistence Configuration Editor (single persistence unit)

Figure 3.5. The Persistence Configuration Editor (multiple persistence units)

New Add a new persistence unit configuration

Remove Remove the selected persistence unit(s)

Generate Schema Generates the database schema out of the entity classes who belong to the selected persistence unit.
See Generate database schema from persistence unit for details.

Data Modeling

182

Accessibility
Axon.ivy Project Tree > double click on the Persistence label.

Features
Data source Here you have to choose a database configuration which will be the data source of this persistence

unit. Means all the data are loaded and stored within this database. Go to the Database Configuration
Editor to configure available datasources.

There is also an IvySystemDatabase datasource which points to the current System Database.
Normally you would prefer your own database to split valuable customer data from the system data.

Description You can give your persistence unit any description here.

Managed Classes Specify the list of classes to be managed in this persistence unit. If 'Exclude unlisted classes' is
checked, only the entity classes which are defined in the list are included in the persistence unit.
Otherwise all entity classes of the project are included automatically plus the entity classes defined
in the list.

Properties Specify some properties for the persistence unit. You do not have to specify something here except
you now what you are doing.

Generate database schema from persistence unit

Generation options (Step 1)
On the first wizard page you can specify the environment and the type of the schema generation.

Figure 3.6. Database schema generation option

Data source For the schema generation the data source of the persistence unit is used.

Environment Specify the environment on which you like to generate the database schema.

Type Specify the type of the schema generation. You can choose between update and create.

• update: Does update the current available schema on the database.

Data Modeling

183

Warning

The update does not refactor any changed table names, field names or field types. If a table
or field does not exist in the database a new one is created even if the same table or field
with another name exists.

• create: Does drop the current schema on the database and create a new one.

Warning

This option does delete all data which is stored in the database.

Generation preview (Step 2)
The second wizard page shows a preview what will be executed on the database.

Figure 3.7. Database schema generation preview

Accessibility
Axon.ivy Project Tree > double click on the Persistence label > Select a persistence unit > Generate Schema.

Persistence API

Overview
The Axon.ivy Persistence API is used to load entity objects directly from the database or save/update them on the
database. The Persistence API can be accessed by IvyScript anywhere scripting is supported. The Persistence API
can only deal with entity objects, means objects of type Entity Classes. The Persistence API can be found under
ivy.persistence.<persistence unit>. Here you find all the methods for finding, persisting, updating and querying entity
objects. See IIvyEntityManager fore more information. Replace <persistence unit> with the name of a persistence unit.
The persistence units can be configured with the Persistence Configuration Editor.

Persist an entity object
To persist (save/create object on the database) you can use the persist() method of the Persistence API.

../PublicAPI/ch/ivyteam/ivy/process/data/persistence/IIvyEntityManager.html

Data Modeling

184

Warning

This method only works properly if the entity object and all the associated objects are not jet persistent. Otherwise
you have to use the merge method.

Example (Product is an Entity Class):

// persist new created product
Product product;
product.name = "Product name";
product.nr = 12;
ivy.persistence.<persistence unit>.persist(product);

// get id of new created product
Number newProductId = product.id;

Find an entity object by id
To find an entity object by id (select object on the database) you can use the find() method of the Persistence API.

Example (Product is an Entity Class):

// load product with id 1 from the database
Product product = ivy.persistence.<persistence unit>
.find(Product.class, 1) as Product;

Merge an entity object
To merge (update or save/create object on the database) you can use the merge() method of the Persistence API.

Warning

Only the returned entity object of this method is the really updated or saved/created object. The object given
to this method is not changed.

Example update (Product is an Entity Class):

...
// change before loaded product
product.name = "New product name"
Product updatedProduct = ivy.persistence.<persistence unit>
.merge(product) as Product;

Example save/create (Product is an Entity Class):

// save new created product
Product product;
product.name = "Product name";
product.nr = 12;
Product savedProduct = ivy.persistence.<persistence unit>
.merge(product) as Product;

// get id of new created product
Number newProductId = savedProduct.id;

Remove an entity object
To remove (delete object on the database) you can use the remove() method of the Persistence API.

Example (Product is an Entity Class):

Data Modeling

185

...
// delete the product from the database
ivy.persistence.<persistence unit>.remove(product);

Refresh an entity object
To refresh (reload object from the database) you can use the refresh() method of the Persistence API.

Example (Product is an Entity Class):

...
// change before loaded product
product.name = "New product name"
// reload object from the database and revert local changes
ivy.persistence.<persistence unit>.refresh(product);

Persistence Queries (JPA QL)
With the Persistence API it is possible to execute Java Persistence API Query Language (JPA QL) statements. See
IIvyQuery for more information about the Query API. The query language based around the objects that are persisted but
with syntax very similar to SQL. You have always to use the names of the Entity Class and the attributes and not the names
from the database.

Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct is the same
as select but PRODUCT is not product and foo.barSet is not foo.BARSET. This manual uses lowercase JPA QL
keywords.

Single Result

To execute a JPA query where you are expecting a single value to be returned you would call getSingleResult(). This
will return the single Object. If the query returns more than one result then you will get an Exception. This should not be
called with "UPDATE"/"DELETE" queries.

Example (Product is an Entity Class):

Product product = ivy.persistence.<persistence unit>
.createQuery("select p from Product p where p.id = :id")
.setParameter("id", 1)
.getSingleResult() as Product;

Warning

Calling this method in automatic transaction mode (by default) will close the recordset automatically.
Consequently you can not invoke this method multiple times or in combination with getResultList() on
the same query.

Result List

To execute a JPA query you would typically call getResultList(). This will return a List of results. This should not
be called with "UPDATE"/"DELETE" queries.

Example (Product is an Entity Class):

List<Product> products = ivy.persistence.<persistence unit>
.createQuery("select p from Product p where p.price > :price")
.setParameter("price", 10)
.getResultList();

../PublicAPI/ch/ivyteam/ivy/process/data/persistence/IIvyQuery.html

Data Modeling

186

Warning

Calling this method in automatic transaction mode (by default) will close the recordset automatically.
Consequently you can not invoke this method multiple times or in combination with getSingleResult()
on the same query.

Execute Update

To execute a JPA UPDATE/DELETE query you would call executeUpdate(). This will return the number of objects
changed by the call. This should not be called with "select" queries.

Example delete (Product is an Entity Class):

// delete all products
Number deletedRows = ivy.persistence.<persistence unit>
.createQuery("delete from Product p")
.executeUpdate()

Example update (Product is an Entity Class):

// update product name
Number updatedRows = ivy.persistence.<persistence unit>
.createQuery("update Product set name = :newName where name = :oldName")
.setParameter("newName", "New Product Name")
.setParameter("oldName", "Old Product Name")
.executeUpdate();

Parameter binding

The JPA Queries supports named and numbered parameters and provides methods for setting the value of a particular
parameter.

Tip

You should always use parameter binding and do not build the query with string concatenation, because of
performance reasons.

Example with named parameter:

ivy.persistence.<persistence unit>
.createQuery("select p from Product p where p.price > :price")
.setParameter("price", 10)

Example with positional parameter:

ivy.persistence.<persistence unit>
.createQuery("select p from Product p where p.price > ?1 and p.amount <= ?2")
.setParameter(1, 10).setParameter(2, 80)

Paging the result

To specify the range of a query you have the two methods setFirstResult() and setMaxResults() available. The
start position of the first result, numbered from 0.

Example (Product is an Entity Class):

List<Product> products = ivy.persistence.<persistence unit>
.createQuery("select p from Product p where p.price > :price")
.setParameter("price", 10)
.setFirstResult(40)
.setMaxResults(20).getResultList();

Data Modeling

187

The call to setFirstResult(40) means starting from the fortieth object. The call to setMaxResults(20) limits the
query result set to 20 objects (rows) returned by the database.

Ordering

JPA QL provide an ORDER BY clause for ordering query results, similar to SQL.

Returns all Products ordered by name:

from Product p order by p.name

You specify ascending and descending order using asc or desc:

from Product p order by p.name desc

You may order by multiple properties:

from Product p order by p.name asc, p.description desc

Distinct results

When you use a select clause, the elements of the result are no longer guaranteed to be unique.

DISTINCT eliminates duplicates from the returned list of product descriptions.

select distinct p.description from Product p

Comparison expressions

JPA QL support the same basic comparison operators as SQL. Here are a few examples that should look familiar if you
know SQL:

Binary comparison (=, <>, <, >, >=, <=, [NOT] BETWEEN, [NOT] IN):

from Product p where p.amount = 100
from Product p where p.amount <> 100
from Product p where p.amount > 100
from Product p where p.amount <= 100
from Product p where p.amount between 1 and 10
from Product p where p.name in ('Product A', 'Product B')

Null check (IS [NOT] NULL):

from Product p where p.name is null
from Product p where p.name is not null

Arithmetic expressions (+, -, *, /):

from Product p where (p.amount / 0.71) - 100.0 > 0.0

The LIKE operator accepts a string value as input parameter in which an underscore (_) stands for any single character, a
percent (%) character stands for any sequence of characters (including the empty sequence), and all other characters stand
for themselves:

from Product p where p.name like 'A%'
from Product p where p.name not like '_a_'

Logical operators (NOT, AND, OR):

from Product p
 where p.name like 'A%' and p.price > 10

Expressions with collections (IS [NOT] EMPTY, [NOT] MEMBER [OF]):

Data Modeling

188

from Product p where p.customers is not empty
from Product p, Category c where p member of c.products

Operators Description

. Navigation path expression operator

+, - Unary positive or negative signing (all unsigned numeric
values are considered positive)

*, / Regular multiplication and division of numeric values

+, - Regular addition and subtraction of numeric values

=, <>, <, >, >=, <=, [NOT] BETWEEN, [NOT] IN, IS [NOT]
NULL, [NOT] LIKE

Binary comparison operators with SQL semantics

IS [NOT] EMPTY, [NOT] MEMBER [OF] Binary operators for collections in JPA QL

NOT, AND, OR Logical operators for ordering of expression evaluation

Table 3.1. JPA QL operator precedence

Calling functions

An extremely powerful feature of JPA QL is the ability to call SQL functions in the where and HAVING clauses of a query.

Lower cases or upper cases a string (LOWER(string), UPPER(string)):

from Product p where lower(p.name) = 'product name'
from Product p where upper(p.name) = 'PRODUCT NAME'

Another common expression is concatenation, although SQL dialects are different here, JPA QL support a portable
concat(string1, string2) function:

from Product p where concat(p.name, p.description) like 'A% B%'

Size of a collection (SIZE(collection)):

from Product p where size(p.customers) > 10

Function Return Description

UPPER(string), LOWER(string) string Lower cases or upper cases a string value

CONCAT(string1, string2) string Concatenates string values to one string

SUBSTRING(string, offset, length) string Substring string values (offset starts at 1)

TRIM([[BOTH|LEADING|TRAILING] char
[from]] string)

string Trims spaces on BOTH sides of string if no char
or other specification is given

LENGTH(string) number Gets the length of a string value

LOCATE(search, string, offset) number Searches for position of search in string starting
at offset

ABS(number), SQRT(number), MOD(dividend,
divisor)

number Returns an absolute of same type as input, square
root as double, and the remainder of a division as
an integer

SIZE(collection) integer Size of a collection; returns an integer, or 0 if
empty

Table 3.2. JPA QL functions

Aggregate functions

The aggregate functions that are recognized in JPA QL are count(), min(), max(), sum() and avg().

Data Modeling

189

This query counts all the Products:

Number productCount = ivy.persistence.<persistence unit>
.createQuery("select count(p) from Product p").getSingleResult() as Number;

This query calculates the average the sum, the maximum and the minimum from the amount of all products:

select avg(p.amount), sum(p.amount), max(p.amount) min(p.amount) from Product p

Accessibility
You can use the Persistence API everywhere you have the ivy variable in the IvyScript. Use
ivy.persistence.<persistence unit>. Here you find all the methods for finding, persisting, updating and querying entity
objects. Replace <persistence unit> with the name of a persistence unit.

190

Chapter 4. IvyScript
Introduction

The IvyScript language is used to write business rules, for manipulating process data, to define data mappings and to set
properties and parameters on Rich Dialog components.

IvyScript Language
The Ivy scripting language IvyScript provides elements to write simple computational expressions but also more complex
elements to program conditional-, loop- and exception handling blocks.

The IvyScript data types are defined for easy use. Especially, IvyScript bewares the programmer from null pointer exceptions
because ivy data objects are automatically initialized to a default value. Read the section Null Handling for more details.

IvyScript can also directly manipulate Java objects in a easy way. Thus Java objects can be used without mapping and auto-
casting simplifies the usage.

Language Elements

Conditions

Conditional expressions Function style

IF (cond, ifExpr, elseExpr)

Java style

cond ? ifExpr : elseExpr

Conditional statements if (cond) { ... } else { ... }

Loops

for
for (init; cond; increment)
{
// do something here
 ...
}

for (element: list)
 // do something here
...
}

while
while (cond)
{
 // do something here
...
}

Exception Handling

IvyScript supports the try/catch/finally construct to handle exceptions that happen while executing external Java code.

IvyScript

191

try
{
// some code here
...
}
catch (Exception ex)
{
// compensate code
...
}
finally
{
// some code that is executed regardless of whether exceptions occurred
...
}

Null handling / Automatic object creation
IvyScript supports auto-initialization of the ivy basic types, i.e. you don't have to create/initialize fields or variables explicitly
with new after declaration. Strings are initialised to an empty String, Numbers to zero, Lists to an empty List.

Ivy composite types (ivy Data Classes) are automatically created. Due to that automatic object creation, a null check expression
like if(in.customer == null) is always false.

You can to use the .# operator to suppress the automatic object creation.

if(in.#customer == null)
{
 // object is null
}

if (in.#customer is initialized)
{
 // object is not null or has been set to a non-default value
}

Note

Any fields or variables of Java classes are also created automatically if they're referenced for the first time and
if the type has a default constructor. Interface types and abstract class types are not auto-created because no
instances can be created of such types in Java.

Note

Inside IvyScript it is generally recommended to use is initialized rather than comparing against null
with the == operator. Because Java types may be null and IvyScript base types never, this operator will always
ensure the correct checking depending on the type of the tested object.

Axon.ivy also supports auto-initialization of AXIS types:

org.apache.axis.types.Time to '00:00:00'

org.apache.axis2.databinding.types.Time to '00:00:00'

org.apache.axis.types.Duration to 'PT0S'

org.apache.axis2.databinding.types.Duration to 'PT0S'

A java.util.Date is auto-initialized to a default value of '0001-01-01 00:00:00'.

IvyScript

192

However, you do not have to compare the values of those types against hard coded default values in your code, simply use is
initialized to find out if a value has been changed by the user or still bears the default value.

if (webserviceData.caseDuration is initialized)
{
 // do something
 ...
}

IvyScript Editor
Overview

There exist two flavours of an IvyScript editor, a yellow editor for coding IvyScript and a blue editor for writing plain text
that contains macros (this means, that you can mix IvyScript with normal text).

Figure 4.1. Standard IvyScript Editor

The yellow editors expect you to enter either a script with multiple statements (e.g. a script, that contains semicolons) which
performs a certain task, or just an expression that evaluates to a certain value. Which is expected, should be clear by the context.

Figure 4.2. IvyScript Editor for macros

Features

Content Assist

Content Assist is invoked by pressing CTRL+SPACE at any point of editing a script. Content assist will open a popup,
displaying proposals that are available in the current context, from which you may then select a suitable option. The selected
proposal is inserted into the editor. You can get proposals for functions, types, packages, variables and methods and after the
keyword "new" you also get a list of constructor proposals.

Example 1: When you would like to have displayed a list with all proposals that match with an already entered "c", you just
enter "c" and press CTRL+SPACE. You will then get a list with proposals of functions, types and packages, each displayed
with a help text if available.

Figure 4.3. Content assist in action

Example 2: The constructor proposal list just appears after the keyword new. So you could create a new date:Data d =
new and press CTRL+SPACE after typing "new" and you get a list of possible constructors to create a new date.

IvyScript

193

Figure 4.4. Constructor proposals

Example 3: Similar to types, you can also get proposals for packages.

Figure 4.5. Package proposals

Tip

When the content assistant is opened and you press CTRL+SPACE again, the visibility level of the proposals
is cycled. There are three different levels: Novice, Advanced and Expert. Depending on the visibility level, you
get to see more or less proposals.

Parameter hopping

Another special feature is parameter hopping. When you insert a constructor or a method that has parameters, the first
parameter is selected. When you now press the Tab key, then the next parameter gets selected. This way you may edit one
parameter after another and simply jump to the next one when you're finished. After the last parameter was selected, the first
is selected again. When you have finished, you can press Enter and the cursor jumps to the end of the inserted method or
constructor.

Figure 4.6. Parameter hopping: After insertion of proposal first parameter is selected

Shortcuts

Shortcut Action

CTRL+SPACE Opens content assistant, when pressing again, the visibility of
the content assistant is cycled.

F2 When pressing F2 in an editor, a bigger editor is opened in an
own Dialog.

ESC Inside an editor that was opened with F2, this closes the dialog
and stores the entered text in the editor from where the F2
editor was opened.

IvyScript

194

Shortcut Action

CTRL+Z Undo

CTRL+Y Redo

Table 4.1. Available Shortcuts inside the IvyScript (and Macro) Editor

Smart Buttons

Figure 4.7. Smart Buttons

Next to the editors you usually find buttons (which ones, depends on the context), that hold certain actions. The exact actions
that those buttons realize are described in the section Smart Buttons. There are e.g. actions to select an attribute from the
current process data, to select content or to insert a link.

Figure 4.8. Macro Editor after insertion of a CMS object with help of the Content Smart Button

Browsers

Attribute and Method Browser
This browser is used to construct and insert IvyScript expressions for IvyScript text fields or areas in inscription masks. Those
expressions are based on the process data in the context of the current step.

Figure 4.9. The Attribute and Method Browser

In the upper left area, you can choose between the different process attributes in the current context (such as in, out, param,
result or panel). Depending on the selection, you can add a corresponding method to the expression in the upper right

IvyScript

195

area and the help area displays information to the selected attribute/method. The constructed expression can be previewed in
the insert text box at the bottom and be inserted into the inscription mask by clicking on the button insert.

Tip

By default only the most common attributes/methods are displayed. With the visibility_level button you can relax
this filter in two steps. The same may be configured permanently in the Axon.ivy Designer IvyScript preferences.

Function Browser
This browser is used to construct and insert IvyScript expressions for IvyScript text fields or areas in inscription masks. Those
expressions are based on the environment in the context of the current process or on general-purpose functions.

Figure 4.10. The Function Browser

In the upper left area, you can choose between the different attributes of the different environment variables in the current
context. You can add a corresponding method to the expression in the upper right area and the help area displays information
to the selected attribute/method.

A description of the accessible objects can be found in the section ivy environment variables

The constructed expression can be previewed in the insert text box at the bottom and be inserted into the inscription mask
by clicking on the button insert.

Tip

By default only the most common attributes/methods are displayed. With the visibility_level button you can relax
this filter in two steps. The same may be configured permanently in the Axon.ivy Designer IvyScript preferences.

IvyScript

196

Data Type Browser
The data type browser is used to choose a data type in the:

• Process Data Class editor

• User Dialog Data Class editor

• User Dialog Interface editor

• Code tabs of inscription masks

Data types are divided into two categories:

Figure 4.11. Ivy Base Types

This category contains the Axon.ivy base types. These types may be used within IvyScript without any restriction. Note that
for convenience reasons database Record and Recordset, XML, Tree and List types are supported out of the box.

Selecting List<?> will bring up another data type browser where you specify the type of the list members.

Figure 4.12. All Other Types

IvyScript

197

Here you can find all other types that are available in your project. This includes all Data Classes that you have created, all
classes that were generated from Web Services and all other Java classes that are on the build path.

Start typing the name of the desired type to get suggestions in the list. On the bottom, you may limit the suggestions to only
custom Data Classes or Web Service classes.

Tip

In the filter, you can use * (any string) and ? (any character) as wild cards.

Tip

To switch between the tabs, use the shortcuts Alt+Left, Alt+Right or Ctrl+Shift+T.

To change the focus from the filter to the list, press the Tab or Arrow-Down key

Public API
For access within IvyScript a substantial portion of Axon.ivy functionality has been released as a Public API. You may use
all classes and their objects in IvyScript fields.

IvyScript Reference

Operators
Operator Explanation Usage

. Field and method access of ivy objects in.customer.name addresses the
name attribute in the data structure

in.message.length() calls the
method length()

.# Field access with suppressed auto
initialisation

in.#customer == null null check
of customer which is not initialised

as Type cast operator in.anObject as Date casts the
object to a Date

Table 4.2. IvyScript Field Access and Type Cast Operators

Operator Explanation Usage

> greater than 5 > 3 is true

< less than 5 < 3 is false

== equals

(Java equals)

5 == 5 is true

"Hello" == "HELLO" is false

!= unequal 7 != 2 is true

>= greater than or equal 7 >= 6 is true

<= less than or equal 2 <= 5 is true

&& Boolean AND true && true is true

|| Boolean OR true || false is true

! Boolean NOT ! true is false

Table 4.3. IvyScript Logic Operators

../PublicAPI/index.html

IvyScript

198

Operator Explanation Usage

+ Addition

String Concatenation

12.5+17.0 is 29.5

"Hello "+"World" is "Hello
World"

- Subtraction 3020-12 is 3008

* Multiplication 2*4 is 8

/ Division 7/2 is 3.5

% Modulo Division 7%2 is 1

** Power 2%5 is 32

++ Increment in.n++

-- Decrement in.n--

- Negative Number value -9

Table 4.4. IvyScript Arithmetic Operators

Ivy Script Data Types

Boolean

A boolean has the values true and false.

The IvyScript Boolean is based on the java.lang.Boolean but has a simplified class reference definition. Type
conversion and format methods has been added while most other methods are hidden.

You can refer to the Java language documentation for a description of the methods of the data type Boolean.

Date

This class represents a date (without time of day).

Date constant objects are entered in the ISO 8601 format as 'yyyy-mm-dd' Where yyyy is for the year, mm for month
and dd for day.

Accepted is also the format: 'dd.mm.yyyy'

new Date() returns the current date.

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Date.

DateTime

An object of this class represents a Date with Time.

Constant DateTime objects are entered in the ISO 8601 format as 'yyyy-mm-dd hh:nn' or 'yyyy-mm-dd
hh:nn:ss'. yyyy is for the year, mm for month, dd for day hh for hours, nn for minutes and ss for seconds.

Accepted is also the format: 'dd.mm.yyyy hh:nn or 'dd.mm.yyyy hh:nn:ss'

new DateTime() returns the current date and time.

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type DateTime.

Time

An Object of this class represents a time of day.

http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/Date.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/DateTime.html

IvyScript

199

Time constants are entered as 'hh:mm' or 'hh:mm:ss' Where hh is for hour, mm for minutes and ss for seconds

new Time() returns the current time.

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Time

Duration

This data type is used for time periods.

You enter a duration in the ISO 8601 time period format such as: '12h20m' or '12h20m30s'

An example for the full format is: 'P3Y6M4DT12h30m10s'‘

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Duration

Number

IvyScript Numbers are Java Numbers. Number objects are integer or fixed-point numbers or floating point numbers.

Integer are entered as: 23 or -10

Fixed Point number are entered as: 0.1 or -123.57458

Floating point numbers are given with exponent: 1.2345E3 or 42.3234E-4

IvyScript Numbers java.lang.Number objects but has a simplified and extended class reference definition. Format
methods has been added for convenience.

You can refer to the Java language documentation for a description of the methods of the data type Number

String

String objects represent character strings.

You enter a String literal in double quotes: "Hello John"

Strings can be concatenated with the + operator: "Hello "+"John"

The IvyScript Strings are java.lang.String objects but has a simplified and extended class reference definition.
Conversion and format methods has been added for convenience.

You can refer to the Java language documentation for a description of the methods of the data type String

Record

Usually Records are obtained in the context of data base queries, where they represent a row in a table. Record objects are
similar to a List where each element has an assigned field name.

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Record

Recordset

A Recordset may be the result of a database query representing part of a table.

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Recordset

XML

This class is used for the processing of XML documents. You can create XML Documents or apply XPath expression to
filter and extract values.

../PublicAPI/ch/ivyteam/ivy/scripting/objects/Time.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/Duration.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/Record.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/Recordset.html

IvyScript

200

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Xml

Tree

This data type holds the data for a tree. A tree is a hierarchy of nodes and sub nodes. A node in the tree contains a value object
and an info string and might have any number of attached children sub nodes.

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Tree

Binary

A Binary object is a wrapper object for a byte array.

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type Binary

List

List objects can contain any number of other objects of any type. Each object in a list has an index which starts at zero.

Examples are: [1,2,3] a list with three numbers

[1,"Red",2,"Green",3,"Blue"] a list with different objects.

Beside this general list type, so called typed list exists. A typed list can only contain objects of certain type.

Those list types are written as follows: List<aClass>

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type List

File

A File object can be used to read/write temporary or persistent data. IvyScript Files are created in a confined area that
belongs to the running application. Temporary files are created in a session-specific file area and are automatically deleted
if a session ends. Temporary Files can be made persistent.

IvyScript Files are always addressed relatively, i.e. absolute addressing will lead to errors. You can create folders and files,
i.e. a hierarchical structure, but you can not navigate outside the confined area (which is also the reason why absolute File
paths are disallowed).

Read the Axon.ivy API Java Doc for the constructors and method summary of the data type File

Tip

You can always use java.io.File as an alternative to the IvyScript File object. However, in this case
you must always use the Java File fully qualified, i.e. you can not import the class. Any IvyScript File can be
transformed into a Java File (e.g. if needed to pass as parameter to a Java method).

The Environment Variable ivy
The ivy environment variable is provided to access the context of the current process, especially the workflow environment
objects, the content management system and the Rich Dialog or HTML dialog contexts. The environment information is
available as fields on the global ivy variable, e.g. to access the CMS of the current project you use:

String okMessage = ivy.cms.co("/text/messages/ok");

Note

Access from IvyScript:

../PublicAPI/ch/ivyteam/ivy/scripting/objects/Xml.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/Tree.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/Binary.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/List.html
../PublicAPI/ch/ivyteam/ivy/scripting/objects/File.html

IvyScript

201

The variable ivy is available everywhere, where IvyScript can be used, e.g. on Step elements or in output tables
of other elements.

Access from Java:

You can also access ivy from a Java context, e.g. from helper classes or on a Rich Dialog panel implementation.
To do so, simply import the ch.ivyteam.ivy.environment.Ivy class and use it's static API.

Please note that it is necessary that the Java code which makes use of the ivy context variable must run
within an Ivy request. Otherwise context information will not be available, most likely resulting in an
EnvironmentNotAvailableException.

Access from JSP:

The ivy variable is also accessible from JSP. You can import the class
ch.ivyteam.ivy.page.engine.jsp.IvyJSP and declare the variable ivy in your JSP as follows:

<%@ page import="ch.ivyteam.ivy.page.engine.jsp.IvyJSP"%>
<jsp:useBean id="ivy" class="ch.ivyteam.ivy.page.engine.jsp.IvyJSP" scope="session"/>

The following environment objects are available on ivy (details of the objects are described in the Public API):

• cal - an IDefaultBusinessCalendar object that gives access to business calendar informations and calculations.

• request - an IProcessModelVersionRequest object, the representation of the request against the server to
execute the current step

• response - an IResponse object, the response of the Axon.ivy Engine on the request to execute the most current step

• wf - an IWorkflowContext object giving access to all workflow objects (all tasks, all cases) of all users for the
application under execution. Can be used to build a whole workflow administration UI application, find tasks, cases, do
statistics, etc. There is a workflow context for each application and vice versa.

• session - an IWorkflowSession object gives access to all workflow objects (task and cases) that belongs to the user
of the current session. A workflow object belongs to a user if:

• A task is assigned to him or a role he owns.

• A task he is currently working on.

• A task he worked on in the past (needs permission).

• A task that a member of a role he owns has worked on in the past (needs permission).

• A case he has started (needs permission).

• A case that have been started by a member of a role he owns (needs permission),

• A case that has a task which he worked on (needs permission).

• A case that has a task which a member of a role he owns has worked on in the past (needs permission).

• task - an ITask object, the representation of the user's current work unit in the process under execution.

• case - an ICase instance that represents the current process under execution

• cms - a IContentManagmentSystem object representing the CMS used in this project.

• html - a IHtmlDialogContext object specifies the Axon.ivy HTML environment

• rd - a IRichDialogContext instance allowing access to the context of the displayed Rich Dialog

../PublicAPI/ch/ivyteam/ivy/environment/Ivy.html
../PublicAPI/ch/ivyteam/ivy/page/engine/jsp/IvyJSP.html
../PublicAPI/index.html
../PublicAPI/ch/ivyteam/ivy/application/calendar/IDefaultBusinessCalendar.html
../PublicAPI/ch/ivyteam/ivy/request/IProcessModelVersionRequest.html
../PublicAPI/ch/ivyteam/ivy/request/IResponse.html
../PublicAPI/ch/ivyteam/ivy/workflow/IWorkflowContext.html
../PublicAPI/ch/ivyteam/ivy/workflow/IWorkflowSession.html
../PublicAPI/ch/ivyteam/ivy/workflow/ITask.html
../PublicAPI/ch/ivyteam/ivy/workflow/ICase.html
../PublicAPI/ch/ivyteam/ivy/cm/IContentManagementSystem.html
../PublicAPI/ch/ivyteam/ivy/htmldialog/IHtmlDialogContext.html
../PublicAPI/ch/ivyteam/ivy/richdialog/exec/IRichDialogContext.html

IvyScript

202

• log - a Logger object. You can define log outputs here that will be collected for each run. You can see these log entries
in the Runtime Log view.

• extensions - a IExtensions instance allowing access to Axon.ivy extensions

• datacache - the reference to the IDataCacheContext instances for the application and session (see Data Cache
for more information)

• persistence - references to the existing persistence units in this application (see Persistence Configuration Editor and
Persistence API for more information about the API of the Persistence)

• var - references to the global variables that are defined for this application (see Data Global Variable for more
information)

• rules - references to the rule engine integration within Axon.ivy.

Note

The rd object is only available within a Rich Dialog logic step and the html object is only available within
a business process.

IvyScript-Java Integration

Call Java methods and fields
You can easily write own Java classes and use it directly in IvyScript. You can call static methods and fields from Java classes
(e.g. java.lang.Math). You have to address the class with the qualified name or use import statements. If a Java method
has no return parameter (void) then the called object of the method is returned (e.g. a call to user.setName(...) returns
object user).

import java.lang.Math;

Number r = Math.random();
Number pi = Math.PI;

out.n= r*pi;

Working with different Date, Time and DateTime
implementations

When working with Databases and Web Services in Axon.ivy, then different implementations of Date, Time and combined
Date-Time information are encountered (e.g. java.util.Date, java.sql.Date, Axis Time, etc). To complicate
matters further, some of those implementations are - for historical reasons - mutable (e.g. java.util.Date) which is from
todays' perspective an unwelcome behavior. This has been remedied by some other implementations.

To facilitate working with values of those different types, IvyScript will always convert them to the corresponding, immutable
IvyScript base types whenever such values are encountered, according to the following table:

Java type Ivy type

Axis1 Time Ivy Time

Axis2 Time Ivy Time

Axis1 Duration Ivy Duration

Axis2 Duration Ivy Duration

JDBC (SQL) Timestamp Ivy DateTime

JDBC (SQL) Date Ivy Date

../PublicAPI/ch/ivyteam/log/Logger.html
../PublicAPI/ch/ivyteam/ivy/extension/IExtensions.html
../PublicAPI/ch/ivyteam/ivy/data/cache/IDataCacheContext.html

IvyScript

203

Java type Ivy type

JDBC (SQL) Time Ivy Time

Java Date Ivy DateTime

Table 4.5. Automatic conversion of foreign Date / Time values

The automatic conversion into IvyScript types takes place transparently. The developer should therefore only think in terms of
the IvyScript Date / Time types. No explicit conversion has to be made, neither when reading nor when writing those types.

Warning

As a general rule, do not create any variables or objects of foreign (i.e. Java) Date / Time types inside IvyScript
. Although a statement such as

java.util.Date myDate = new java.util.Date();

is valid and permitted in IvyScript, the actual type of the myDate object will aways be IvyScript DateTime,
due to the auto-conversion. This can lead to confusion.

When trying to find out if date or time values are null or not initialized, developers should always use the is initialized
operator rather than testing against null:

// recommended style
if (person.birthday is initialized) ...
if (in.lunchTime is initialized) ...
if (schedule.appointment is initialized) ...

// unsafe style, not recommended
if (person.birthday != null) ...
if (in.lunchTime != null) ...
if (schedule.appointment != null) ...

Auto casting rules
IvyScript supports auto casting between the most important Java types and IvyScript types. This means, that you no longer
have to use the toXyz() methods on your IvyScript values. Instead you can directly assign IvyScript types to Java types and
vice versa. This also holds for lists (IvyScript) and arrays (Java).

The following auto-casting rules are supported by IvyScript (bidirectional):

Java type Ivy type

Axis1 Time <-> Ivy Time

Axis2 Time <-> Ivy Time

Axis1 Duration <-> Ivy Duration

Axis2 Duration <-> Ivy Duration

JDBC (SQL) Timestamp <-> Ivy DateTime

JDBC (SQL) Date <-> Ivy Date

JDBC (SQL) Time <-> Ivy Time

Java Date <-> Ivy DateTime

Java Date <-> Ivy Date

Java Date <-> Ivy Time

IvyScript

204

Java type Ivy type

byte[] <-> Ivy Binary

aType[] <-> Ivy List<aType>>

Table 4.6. Auto casting rules

205

Chapter 5. CMS
Content Management System

The content management system (from now on CMS) in Axon.ivy is a hierarchically organized container for content like
labels, short texts, images, source snippets or documents. You can store elements in the CMS and refer them later in processes
or User Dialogs. And you can store content in multiple languages thus enabling you to internationalize your processes or
applications.

Note

CMS content can be overridden in Axon.ivy. You can use this feature to customize the products you develop
with Axon.ivy. See the chapter Overrides for more details.

CMS Structure
A Content object is identified by its path which is expressed as an URI of the form /Labels/Common/CustomerName. The
first / represents the root of the CMS whereas the rest forms a recursive tree of so called Content Objects. Each Content Object
can contain other Content Objects thus forming the recursive structure of the CMS. Each Content Object has one or multiple
Content Object value(s). A Content Object Value is always bound to a specific locale. A locale is a combination of a language
identifier and a region identifier. For example the locale en_US represents the language English for the US region. So, you
can define values for different languages but as well for different regions which use the same language (see how this is used
for the resolution of CMS content at run-time).

In Axon.ivy, each project has its own CMS. Content Objects are looked up by means of the Content Object URI mentioned
above. If the lookup for a Content Object fails in the current project, then Axon.ivy will recursively lookup the URI in the
CMS's of the required projects (breadth-first).

Tip

Put common content that you use in multiple projects into a base project and make your other projects dependent
on the base project. Then you can share and re-use all Content Objects from the base project.

Content Object Types
There are various types of content that can be stored in a CMS. Every Content Object does have a specific content type.
Content Object Values inherit that type from their Content Object. The types are used to access the content in the correct way
(e.g. to set the MIME type in HTTP requests) but as well to provide specific editors for the manipulation of the values.

Symbol Type Name Purpose Edited with ...

Folder For structural purposes only,
folders are container for other
Content Objects.

String Short texts (single line), e.g.
labels, names, descriptions,
tool tips.

String Editor

Text Longer and/or formatted texts
with multiple lines or even
multiple paragraphs.

Text Editor

Image An image of arbitrary size.
GIF Image, PNG Image, JPG
Image types are supported.

Image Editor

Source Scripts of any form, e.g.
javascript or jsp snippets.

Source Editor

CMS

206

Symbol Type Name Purpose Edited with ...

Page Container object for HTML
Page content. This is used in
Web Page process elements.

HTML Page Editor

CSS Cascaded Style Sheet
definitions

CSS Editor

Layout JSP HTML layout with
included Content Objects.
Typically created and used as
part of a Page object.

Layout Editor

Panel Panels are the content parts for
Page objects and are defined
with Layout objects.

HTML Panel Editor

JSP Alternative to the Page object.
Uses pure JSP for layouting.

JSP Editor

Table Allows to place content and
Content Objects into a HTML
table.

HTML Table Editor.

Link Generates a HTML link or
form.

HTML Link Editor

Result Table Generates dynamic tabular
HTML content from process
data.

Result Table Editor

Smart Table Generates dynamic tabular
HTML content from process
data gathered from a data
base, Supports paging.

Smart Table Editor

Document Any document (the most
common document formats
are supported such as PDF,
DOC, XLS, MP3 ...)

Document Editor

Table 5.1. Content Object Types

CMS Access

In Axon.ivy
CMS content can be used in the most locations where Axon.ivy displays text for example in User Dialogs, Web Pages or in
processes. Use Content Objects to set the text of your labels, the images for your icons or the content of your HTML pages.
There are two ways how to use content from the CMS:

• In most Axon.ivy Editors you have a Smart Button (see here too) for the CMS. The smart button will create the correct
code to access the CMS in the current editor.

• In IvyScript you can use the ivy.cms environment variable and hereby the Public API class IContentManagmentSystem.
The class offers the method co that returns content itself and the method cr which returns a link to the content. In Java
the same environment variable is available with ch.ivyteam.ivy.environment.Ivy.cms().

Depending on the context Axon.ivy will return the content (link) in the correct form. For example, if you use an image Content
Object in the Icon-Uri field of the widget configuration of a RLabel then Axon.ivy will display the image in the Rich Dialog.
On the other hand if you use a document Content Object in the HTML panel editor, then it will be rendered as a link to the
document in the HTML page.

../PublicAPI/ch/ivyteam/ivy/cm/IContentManagementSystem.html

CMS

207

Access with a Browser
Some content objects can be accessed directly from the browser with the URL pattern http://
<servername>:<port>/ivy/cm/<application name>/<process model>/<path in CMS>. Assumed
you have created a page in a CMS with the path /StaticContent/MyPage in a project named Test. Type the URL http://
localhost:8081/ivy/cm/designer/Test/StaticContent/MyPage in your browser and the page will be
rendered in there.

Note

The engine of the Axon.ivy Designer must be started to render the Content Objects.

Note

Technically it is possible to display any page with this mechanism. But most pages display information from a
process and therefore access the data of that process. With this mechanism you access the content outside of the
process scope. Therefore you do not have a data class in access so that it might lead to an error.

Content resolution
If content from the CMS is requested, it is addressed using the URI of the Content Object. But the real content (the text, the
string, ...) is stored in a Content Object Value. How does Axon.ivy resolve the Content Object Value whose content is returned?

First, Axon.ivy tries to find the requested Content Object. It looks up in the current project first. If not found Axon.ivy will
recursively look up in the CMS's of the required projects in a breadth-first manner (i.e. first it searches in all of the directly
required projects, then in all of the required projects of the directly required projects and so on).

Second, as soon as Axon.ivy has found the Content Object, it evaluates which is the correct value to return. First, the lookup
locale is defined. The algorithm to resolve the lookup locale is like this:

1. If the content locale was set on the session, then take this locale. See the Public API method
ISession.setContentLocale(java.util.Locale).

2. If the request comes from the Designer and the user defined a specific content locale, then use this locale.

3. If the (root) request was initiated from a browser, then use the browser locale. Please look up the help of your browser
to see how you can edit this setting.

4. If the (root) request was initiated from a Rich Client, the locale of the client operating system is used.

5. Otherwise use the default locale of the operating system.

When Axon.ivy knows the lookup locale, then it tries to resolve the correct value. The algorithm for that is like this:

1. If there is a value with the same locale like the lookup locale, then return this value

2. If there is a value with the same language in the locale like the language of the lookup locale, then return this value.

3. If there is a default value, then return this value.

4. Otherwise return the first value.

CMS Manipulation

CMS View
This view is the central UI element for the interaction with the CMS. It shows the CMS of all open projects in the workspace
including all Content Objects and their values and offers multiple ways to perform actions on the CMS and the Content Objects.

../PublicAPI/ch/ivyteam/ivy/security/ISession.html

CMS

208

Accessibility

Window -> Show View -> CMS

Features

Display Content Object values

The central element in the view is a table tree that shows the structure of the CMS in the first column (the tree column).
Furthermore the table can display one column for every language that is available for at least one project in the workspace.
In those columns the value of the corresponding Content Object in the corresponding language is shown.

If you want to focus on the CMS structure then you can hide all the language columns so that only the first column is displayed.
Just click on in the toolbar of the view to toggle between hiding and displaying the columns for the languages.

If you want to see the column for the values then you can configure for which languages the table shows a column. By default
the view shows a column for the default language(s) of the project(s) in the workspace. Click on the menu () in the view
to configure which columns are visible.

Note

The * in the title of a language column indicates that the language is the default CMS language for a project.
Because you can have multiple projects in your workspace, it may be that you have multiple default languages
and therefore multiple columns with a *. You can define the default languages for every project in its CMS
preferences.

Inline Editing

For some types you can edit the Content Object values directly. For (some) text based types you can edit the text directly in
the view, just click in the cell of the value and type.

For file based types you can import a file for each value directly in the cell. Just move your mouse over the cell of the value
for which you want to import a file and click on the icon on the right. Values for which already content is available show
a ... in their cell.

Filter the view

By using the CMS search you can filter the contents in the view according to your search string. Enter a filter expression
and the CMS table tree will be reduced to only show the Content Object matching that expression. If there is no match, all
Content Objects are shown.

CMS

209

Use an asterisk (*) as wildcard to search for any sequence of characters: E.g. the filter expression ivy*data would match
ivyMyFancyData, ivydata, ivy something else data, etc.

Use a question mark (?) as wildcard to search for any single character: E.g. the filter expression image?data would match
imageZdata, image0data, etc.

Tip

An asterisk (*) is always added implicitly at the end of your filter expression. So if you enter the string ivy, the
filter expression that is really used is ivy*.

Add new Content Objects

You have basically two options to create new Content Objects, either you do it kind of generic or you can create them from
file(s). As a convenience method you can create folders in a more direct and simpler way than other Content Objects as a
folder does not have value(s). You can execute all three actions only in the popup menu of the view.

Use Add... in the popup menu to create new Content Objects and enter the type, the name, the value and whether you want
to create values for all languages in the CMS.

The default for the type is String. The Document types are not available for manual choosing, use Add from file(s)... if you
want to create such Content Objects.

In the name column you can use either a simple name or as well an absolute or relative path. If you do so, then Axon.ivy will
check the corresponding path and create folder Content Objects where necessary.

For text based types you can edit the text directly in the value column. For file based types you can import a file, just move
your mouse over the cell and click on the icon.

In the last column you can decide whether you want to create automatically one value for every CMS language or not. The
default comes from the corresponding project property and overwrites that if changed.

If you choose to create the Content Objects from file (the Add from file(s)... command in the popup menu, then first a file
chooser dialog is opened. In there select the files that you want to have in the CMS and click OK. Then Axon.ivy will create
a Content Object for each file. The type is detected automatically (if it cannot be detected then that file will be omitted), the
name is set to the file name and the default value is the file content. After the file chooser, Axon.ivy opens the normal Add
Content Object dialog so that you can revise the decisions before the Content Objects gets actually created.

CMS

210

You can add Content Objects too from the web. Just copy the URL and click on the Add from URL... command in the popup
menu. In the next dialog, just enter the URl and continue to import the Content Object from the web.

Other actions

In the view you can invoke several actions from the popup menu:

 Rename Opens a dialog where you can enter a new name for the currently selected Content
Object.

Warning

When you rename a Content Object, the URI of all it's children will
change (e.g. from /Labels/Common/Ok to /Labels/Buttons/Ok). Any
references to those objects (including the renamed object) will not be
updated automatically and might be broken!

 Copy Copies the currently selected Content Object (including all of it's children) to the
clipboard. The copied Content Objects can be inserted somewhere else in the content
tree with Paste.

 Paste Inserts any Content Object(s) that was copied before to the clipboard with Copy. The
copied Content Objects are inserted as children of the selected Content Object .

Note

Not all Content Object types are allowed as children of other Content
Object types. In such a case the Paste menu entry might be disabled.

 Delete Deletes the currently selected Content Object (including all of its children) from the
CMS after requesting a confirmation from the user.

Warning

Deleting a Content Object will break all references to the object or its
children!

 Copy URI Copies the URI of the currently selected Content Object to the system clipboard. Use
CTRL + v to insert the URI into any text fields or editors.

 Copy URI as IvyScript macro Copies the URI of the currently selected Content Object as an IvyScript macro tag to the
system clipboard. Use CTRL + v to insert the macro into a IvyScript Macro text editor.

 Refresh Content Refreshes (i.e. reloads) the content below the currently selected Content Object.

Drag and Drop

Content Objects (e.g. strings and images) from the CMS view can be dragged and dropped into

• the Rich Dialog editor (aka Visual editor)

• Widget Configuration fields

• the Html Dialog editor

to be used for label texts or for images.

Content Object Editor
The Content Editor is used to manipulate Content Objects in the Content Management System (CMS) of a project.

CMS

211

Accessibility

Double click on a Content Object in the CMS view or select one and press the ENTER key.

Content Object header

The editor has a header with a title and buttons for the most important actions.

In addition to the Content Object type and the path in the title you can find more information about the Content Object in the
tool tip of the title. There you see the date, time and the author of the last change. And the following actions are available
on the right end of the header:

Open page preview
Opens a preview of the Content Object in a web browser. This action is only available
within a Page Content Object. If the Web Browser View is active it is used otherwise
an external browser is opened to show the preview.

Add new Content Object value Adds a new value to this Content Object. A dialog is opened for the user to select the
language of the new value.

Rename Content Object Opens a dialog where a new name for the this Content Object can be entered.

Warning

When you rename a Content Object, the URI of all it's children will
change (e.g. from /Labels/Common/Ok to /Labels/Buttons/Ok). Any
references to those objects (including the renamed object) will not be
updated automatically and might be broken!

 Copy Content Object Copies this Content Object (including all of it's children) to the clipboard. The copied
objects can be inserted somewhere else in the content tree with Paste.

 Delete Content Object Deletes this Content Object from the CMS. A Content Object is deleted with all of its
values and child Content Objects.

Warning

Deleting a Content Object will break all existing references to it or to any
of its children!

Content Object Values area

Each of the values of a Content Object is shown with its corresponding value editor inside a collapsible section that is labelled
with the language of the value. The default value is marked with a * (star) after the language name. The date, time and author
of the last change is also shown for each value in the tool tip of the title of the value. Like in the header for the Content Object
you find some actions on the right side:

 Import value content Opens a file dialog that allows to select a file with content to be imported.

CMS

212

Note

Not all content types allow to import content (e.g. strings do not). If the
import is not supported, then the toolbar action will be disabled.

The file selection dialog will only show files that are suitable for import,
depending on the standard extension for the required content type. i.e.
you cannot select a .css file for import into a png Image Content Object.

 Export value content Some content types allow to export the content of the value into a file. If the export is
not supported, then the toolbar action will be disabled.

 Copy Content Object value Copies this Content Object value to the clipboard. The copied objects can be inserted
somewhere else in the content tree with Paste.

 Delete Content Object value Deletes this Content Object value from the CMS.

Content Object Value Editors
The Content Object Values area of the CMS editor contains specific editors for values of the different Content Object Types.
This section briefly introduces them.

String Editor

The string editor is simply a single-line text field; it does not accept line breaks. Content cannot be imported.

Text Editor

The text editor has two views: an Edit and a Source view. The Edit view is a WYSIWYG HTML text editor in which you
can edit and format your text and the text appears like it will be at run-time. The Source view is a text only editor where you
can edit the text directly in HTML. Both views are synchronized, if you edit text in the Edit view then the text in the Source
View gets updated and vice versa. Content cannot be imported.

CMS

213

Image Editor

The image editor shows images of the types GIF, PNG and JPG. Content import is supported. For images that are larger than
the available space just the top left corner is displayed.

Tip

Change the file browser's view to show thumbnails of your images. This helps you to select the correct image.
Depending on your operating system (version), the way to turn this on varies.

Document Editor

CMS

214

Preview The document editor is used for almost all document content objects (basically for binary data).
The editor can show a preview of textual content and will also show information about the size
and encoding of the displayed content. For binary document types (e.g. PDF, audio or video) a
preview is not available.

Import from File Importing of content is supported. The import will try to infer the encoding of the imported
document. If this is not possible, the user is asked to set the encoding.

Source Editor

The source editor is used to edit any kind of source text like JSP, HTML or JavaScript.

By clicking on the button, the attribute browser opens where the user can insert process data. An optional condition may
be specified as well as a suitable format for the type of the selected attribute (if available).

CMS

215

CSS Editor

The CSS editor is a simple text editor. You can import the content from a file.

HTML Table Editor

The HTML Table Editor is explained in the HTML chapter.

HTML Link Editor

The HTML Link Editor is explained in the HTML chapter.

Result Table Editor

The Result Table Editor is explained in the HTML chapter.

HTML Page Editor

The HTML Page Editor is explained in the HTML chapter

HTML Panel Editor

The HTML Panel Editor is explained in the HTML chapter.

Smart Table Content Editor

The Smart Table Content Editor is explained in the HTML chapter.

JSP Editor

The JSP Editor is explained in the HTML chapter.

Layout Editor

The Layout Editor is explained in the HTML chapter.

CMS

216

CMS Translation
The CMS is usually used for internationalization or regionalization of content. Often the necessary translations are not done by
the Ivy developers but by dedicated persons within the organization or even by external persons e.g. professional translators.
To simplify the exchange of the CSM content you can export the CMS into a Excel file and import it again after the translation.
As long as you can import Excel files you can use your favorite translation tool for the actual translations.

Export from CMS

Click Export... from the Axon.ivy project tree view or from the File menu. Then choose CMS from the category Axon.ivy.

Choose which CMS you want to export and where in the file system it should be stored. After you started the export, you can
open the exported file directly from the confirmation dialog.

The exported file contains one column for the name, one for the URI and one for each language of the CMS. Only String
and Text types are exported.

Import into CMS

Click Import... from the Axon.ivy project tree view or from the File menu. Then choose CMS from the category Axon.ivy.

CMS

217

Choose in which project you want to import and where in the file system the import file comes from. After the import you
will see a dialog that shows you the stats of the import like how many Content Objects were updated.

In the import file, the URI column is used as ID. If a Content Object with the same URI is found, then the content in the
language columns in the Excel file is put in the corresponding value of the Content Object.

Note

The import can only update already existing objects or values but not create anything new. So, if you add a
column for a new language or you add a new row in the Excel file with a new URI, then the CMS import will
omit this data.

218

Chapter 6. User Interface

User Dialogs
A User Dialog is one of the two possibilities to interact with the user in a process. The other possibility are simple Web Pages
as already used in pre Xpert.ivy 4.x releases. User Dialogs are provided in Axon.ivy 5.x using either the Java Server Faces
(JSF) technology from Oracle or a Rich Internet Applications (RIA) technology from Canoo with the name ULC.

In Axon.ivy we use Html Dialog - or HD for short - as the name for a User Dialog Component built with JSF. On the other
side a User Dialog Component based on the Canoo ULC Rich Internet Application Technology is called Rich Dialog or RD
respectively.

User Dialog Concept

The concept of a User Dialog follows the famous Model-View-Controller pattern. It consist of the following parts:

• Data - The internal data of the User Dialog (the model)

• View / Panel - The visual representation of the User Dialog (the view)

• Logic - The implementation of the functionality (the behavior) of the User Dialog (the controller)

• Interface - A description of the capabilities of the User Dialog

• (Data Binding) - A mapping of widget properties with data members

• (Event Mapping) - A mapping of an UI event with a process in the User Dialog Logic

The logic (i.e. controller) of User Dialogs is implemented in a process based manner. This means that all the GUI events
(which are generated by the user who interacts with the dialog) are handled by means of a corresponding UI processes in the
logic of the User Dialog component. So the behaviour of the User Dialog is not implemented by writing source code in a
programming language (such as Java, Visual Basic or C#) but rather by graphically modelling a process logic in Axon.ivy.

The multi-part structure of a User Dialog becomes also evident when looking at it's representation in the Axon.ivy project tree:

Interface

The interface of a User Dialog defines its behavior in an abstract way and independent of it's implementation. In other words it
defines what a User Dialog is capable to do. In more detail, the interface defines Start Methods and Methods of a User Dialog.

The interface is edited and defined using the Interface Editor.

Logic

The logic of a User Dialog defines how a User Dialog performs its work by means of a process model. For each UI Event
(triggered by the actual user, e.g. by clicking on a button) and for each Start Method and Method defined on the interface you
may implement a process to handle these events.

The logic of a User Dialog is edited and defined using the Process Editor.

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.canoo.com/
http://ulc.canoo.com

User Interface

219

To build the logic of a User Dialog the Process Editor offers a set of process elements that is somewhat different from the
standard set. The extra User Dialog drawer of the Process Editor palette contains elements, which can only be used within
User Dialog logic:

Icon Title Short Description

User Dialog Opens another User Dialog

Init Start Invoked when the User Dialog is started.
This element is executed at most once
and initializes the User Dialog and its
data.

Method start Invoked when one of the methods
declared in the User Dialog Interface is
called.

Event Start Invoked when a mapped widget event
is received from the view of the User
Dialog.

Script Encapsulates IvyScript code or changes
in the User Dialog data.

Process End Ends a User Dialog UI process.

Exit End Exits and closes this User Dialog and
continues with the calling process (if
opened synchronously).

Table 6.1. Process elements only available in User Dialog Logic

On the other hand, some elements of the Dialog & Control drawer are missing, because they are forbidden:

Icon Title Short Explanation

Request Start The normal Request element is replaced
with the User Dialog start element.

Web Page The Page element is HTML-specific and
thus not available in the User Dialog
logic.

Tasks The Tasks element is not available
because role change and task data
persistence can only happen between
User Dialogs.

Task The Task element is not available
because role change and task data
persistence can only happen between
User Dialogs.

User Interface

220

Icon Title Short Explanation

Event Start Start Event Beans are currently not
supported inside User Dialogs.

Intermediate Intermediate Events are currently not
supported inside User Dialogs.

Call & Wait Call & Wait are currently not supported
inside User Dialogs.

Process End The regular Process End element is
replaced with the User Dialog End
element.

End Page The End Page element is HTML-specific
and thus not available in the User Dialog
logic.

Table 6.2. Process elements that are forbidden in User Dialog Logic

Warning

When invoking Callables from inside a User Dialog you have to bear in mind, that the Callable process will
be executed within the scope of the User Dialog that executes it, i.e. the same restrictions apply as if the
Callable was defined right inside the User Dialog's logic. This ultimately means that you have to ensure that the
called (business) process does not contain any of the forbidden elements mentioned above. Otherwise you will
experience failures or unpredictable results during execution of the Callable process.

Data

The data of a User Dialog define its internal state (if you are familiar with the MVC pattern, you should consider the data
as the Model of a User Dialog). The data of a User Dialog has private scope (i.e. is not visible from outside). Access can be
granted by defining and implementing methods that return or manipulate internal data.

The data of a User Dialog is edited with the Data Class Editor.

User Dialog Interface Editor

Overview

The User Dialog Interface editor is used to define the API (Application Programming Interface) of a User Dialog. Since
User Dialogs are components which are intended for reuse, they must define a stable interface on which other clients (i.e.
processes or User Dialogs) can rely upon. An interface is defined independently from the implementation of the User Dialog
and therefore separates the way of how a User Dialog performs it's work from the declaration of what it is capable to do.

Accessibility

Axon.ivy Project Tree -> double click on the Interface node below a User Dialog in the tree:

Interface tab

The User Dialog Interface editor consists of the sections for the declaration of Start methods and Methods. Each section can
have multiple entries, which can be added, edited and removed with the respective buttons. You can also edit an entry by
simply double clicking on it (with the exception of the initially present default start() method).

User Interface

221

Tip

It is strongly recommended to write a short description for each declared interface part in the Description area of
the details pane. This will help clients of the User Dialog to understand the characteristics of the respective part.

Start Methods

Start methods define different entry points into a User Dialog. A User Dialog can be started with different parameters and
return different values, depending on which entry point is chosen at call time.

When a new Start method is added (or edited) you must provide a name as well as input and output parameters. The name
of the method is entered on the first page of the opened wizard.

The second page of the wizard is used to define the input and output parameters of the method. Both lists may be left empty.
By clicking on the add button a new entry can be generated. Each method parameter consists of a name, a type, an optional
description and the definition of whether null should be accepted at this position or not.

Tip

If the name/parameter combination (the so called signature) of the Start method as defined so far is identical
to the signature of another Start method, then a warning will be displayed. The warning disappears when either
arguments are added or argument types are changed or if the name of the method is altered accordingly, i.e. the
signatures are no more identical.

User Interface

222

Tip

You may already specify the type of the parameter here by adding a colon ':' to the parameter name, followed
by desired type (e.g. myDateParameter:Date). When only adding a colon to the name without a type, the data
type selection dialog will appear.

Note

Start methods defined in the User Dialog Interface can be selected inside a User Dialog Process element when
the respective User Dialog is chosen to be started.

Methods

In the Methods section of the User Dialog Interface Editor the regular interaction methods of a User Dialog are defined. Those
methods become available when a User Dialog is accessed with scripting, e.g. when used as an embedded User Dialog.

The declaration of Methods is absolutely similar to the declaration of Start methods, with the sole difference that a Method
can only have a single return parameter (or none).

Metadata tab

You can define a textual description, a set of tags (keywords) for each User Dialog. These can be searched by the Ivy search
page.

Description A description of the User Dialog

Tags The tags are a space separated list of keywords used to categorize User Dialogs. We suggest to define a
vocabulary of tags within your team/company to always use the same terms.

User Interface

223

New User Dialog Wizard

Overview

The New User Dialog wizard lets you create a new User Dialog. This can be a Rich Dialog, an Html Dialog or an Offline
Dialog.

The wizard creates several resources for the new User Dialog:

View The visual component of the User Dialog (different technologies are possible).

Process The Process that contains the logic of the User Dialog.

Data Class The Data Class that holds the data of the User Dialog.

Interface The Interface defines the ways of interaction with other User Dialogs or business processes.

Accessibility

File -> New -> Rich Dialog

or

File -> New -> Html Dialog

Page 1: Dialog Definitions

Figure 6.1. The New User Dialog Wizard Page 1

Project name Choose the project that your User Dialog belongs to.

Namespace Enter a namespace for your User Dialog. Use namespaces to group your User Dialogs. The grouping
hierarchy is separated by the dot character. This is a similar concept as packages in the Java programming
language.

User Interface

224

Name Enter the name of the User Dialog that you want to create.

Dialog Type Select the type of the User Dialog that you want to create.

Tip

Since Html Dialog as well as Offline Dialog both base on JSF technology, it's possible to
switch between those two dialog types after creation. Whereas it's not possible to switch
from or to a Rich Dialog once it's created.

View Type A view type defines the base layout of a User Dialog. Depending on the dialog type the view layouts
vary and have the following attributes:

For the dialog types Html Dialog (JSF) and Offline Dialog (JSF) the view type could be selected
from a predefined list of layouts. The list contains page and component layouts. Use a page layout
for a standalone Html page, select a component layout to create a reusable Html component. See the
corresponding chapter layouts and templates for more information.

For the dialog type Rich Dialog (ULC) one of the following view types could be selected:
GridBagLayoutPane, BoxLayoutPane and BorderLayoutPane.

Tip

Changing the view type of a Rich Dialog after it has been created may be tricky, therefore
you should be aware of layout requirements that your new Rich Dialog might have. Select
a GridBagLayout if you're not sure, it is the most flexible and used layout.

Page 2: Dialog Data

Figure 6.2. The New User Dialog Wizard Page 2

This page provides the functionality to create necessary configuration of a User Dialog simple and quickly. The starting point
is a data class. e.g. the data class of the process that calls the User dialog. Based on this data class the following configuration
could be created:

Start-Method A start method is created based on the selected In and Out attributes. The necessary
parameter mapping will be automatically generated.

User Interface

225

Data Class fields For each selected In/Out attribute a field will be created in the Data Class of the User
Dialog. The name of the created field could be defined in the column 'Field Name'.

Form (for Html/Offline Dialogs) For each selected UI attribute a form field is created in the View. E.g. for a field
birthday, of type Date, a Label and a Datepicker will be generated.

Tip

Create a User Dialog in the context of a User Dialog Process Element: If the New User Dialog Wizard is opened
on a User Dialog Process Element, the initial Caller Class will be the class of the calling process and the in/out
parameter mapping from the process to the User Dialog and back will be generated automatically.

Tip

Create a User Dialog in the context of a Data Class: If the New User Dialog Wizard is started via the context
menu on a Data Class, the initial Caller Class will be the selected Data Class.

Html Dialogs
An Html Dialog (in the following abbreviated as HD) is one of two possibilities to implement a User Dialog Component.
HDs are implemented using the Java Server Faces technology from Oracle

This means, that the view of an HD is defined with the means of an XHTML document and that it is displayed in a web browser.

PrimeFaces JSF Component Library
Axon.ivy is bundled with the JSF component library PrimeFaces, an open source JSF component library developed by Prime
Teknoloji. It provides a collection of mostly visual components (widgets). These can be used by JSF programmers in addition
to the small set of basic components that are shipped with the core JSF platform. A very good starting point to learn more
about PrimeFaces can be found in the PrimeFaces Showcase. Detailed PrimeFaces widget API documentation can be found
in the PrimeFaces VDL doc.

Tip

The Html Dialog Editor supports PrimeFaces during design time. This means that you can profit from code
completion support, tag validation, structured properties in the property view and a graphical representation in
the preview part for all PrimeFaces widgets.

The elements of the PrimeFaces library are introduced with the <p:> namespace on your XHTML page. In addition also the
primefaces-extension<pe: and primefaces-mobile <pm: widget libraries are included in the Axon.ivy installation.

Note

It is also possible to install and use additional JSF libraries. To do so you copy the concerning .jar file into the
folder /webapps/ivy/WEB-INF/lib of Axon.ivy Designer and Axon.ivy Engine respectively. Then you have to
add a namespace attribute xmlns:xx on your html pages to use the widgets.

Themes
With themes the visual appearance of the application such as the color scheme and the decoration of components can be
changed. PrimeFaces comes with a number of predefined themes where you can choose from. Or you can create your own
theme using the theme generator tool jQuery ThemeRoller. To learn more about PrimeFaces themes, the web site PrimeFaces
Themes is the right starting point:

The theme called modena-ivy is configured as default. However, you can easily configure another default theme with the
following steps:

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://primefaces.org/
http://www.primefaces.org/showcase/
http://www.primefaces.org/docs/vdl/
http://www.primefaces.org/themes.html
http://www.primefaces.org/themes.html

User Interface

226

• The PrimeFaces Community Themes are already included in the product. To use a own theme copy your themeXY.jar file
into the folder /webapps/ivy/WEB-INF/lib of Designer and Engine respectively

• Edit the theme setting parameter primefaces.THEME in the file /webapps/ivy/WEB-INF/web.xml

• Restart Axon.ivy

Tip

By using the ch.ivyteam.ivy.jsf.primefaces.IvyPrimefacesThemeResolver the theme can be configured by
application and session. See Engine Guide > Miscellaneous > Html Dialogs > Primefaces Theme

Html Dialog Data Binding and Event Mapping
An Html Dialog follows the model-view-controller pattern of the Axon.ivy User Dialog concept. So part of an implemented
HD is a data class (the model) whose data fields can be bound to widget properties of the view. To define such a binding,
Axon.ivy provides the special object data.

On the other hand, the controller part of an Html Dialog is implemented by a series of UI processes that can be mapped to
events on the view such as mouse clicks. To define such an event mapping, Axon.ivy provides the keyword logic to call an
event process or a method process in the logic.

Look at the following small code sample of a form with a mapped data attribute on an input text field and a button with a
bound event process:

 <h:body>
 <h3>My JSF Form</h>
 <h:form id="myForm">
 <p:outputLabel value="#{ivy.cms.co('/labels/street')}" for="street" />
 <p:inputText value="#{data.address.street}" id="street" />
 <p:commandButton value="#{ivy.cms.co('/labels/submit')}" actionListener="#{logic.submit}"/>
 </h:form>
 </h:body>

Data Class Auto Initialization

Data Classes are automatically initialized if an Html Dialog sets a property on it.

E.g. If data.address is null and a form is submitted with a value for data.address.street then a
data.address object is automatically created.

See also Public API ch.ivyteam.ivy.scripting.objects.jsf.el.AutoInitializable.

Html Dialog Editor

Overview

The Html Dialog editor allows to implement the view of an Html Dialog (i.e. the JSF view). The Html Dialog editor consists
of two views, the source view and the graphical view. In the source view you can read and edit the JSF (or xhtml) source in
a text-based editor. In the graphical view you can preview and edit the visual representation of the JSF page. Both views are
linked to each other and every change is synchronized to the other view. So a change in one view is automatically reflected in
the other one, e.g. if I change the text of a h1 HTML element in the source view then the design view is immediately updated
and shows the new text. There are options to arrange the two views in horizontal or vertical panes or to show only one of them.

The third element is a palette with drawers for the most important Primefaces and JSF components and widgets that can be
used in views. Such components/widgets can be dragged from the various palette drawers and then be dropped onto both the
design view or onto the source view As well the rearrangement of already positioned widgets is possible in both views.

http://www.primefaces.org/themes.html

User Interface

227

Accessibility

Axon.ivy Project Tree -> double click on the View node of a Html Dialog:

Graphical View

The graphical view of the Html Dialog editor allows to compose an Html Dialog view in a graphical mode by selecting a
UI element from the palette and positioning it on the view. Similarly, already positioned elements can be dragged to another
position on the view, simply by selecting and dragging them with the mouse. In the same way, just select an element and
press the delete key to remove an element from the JSF page. As the graphical and the source views are linked together, all
these actions are synchronized to the source view.

User Interface

228

Tip

The graphical view displays the JSF page as realistic as possible. It also shows all the content from the template
or from includes. But you cannot select or edit these elements.

Default Actions

If you double click on one of the most important elements (the ones that you find in the palette) then the default action of
this element is triggered. It depends on the element what happens. For example for a Primefaces OutputLabel you can edit
the text of the label or choose a CMS content object for it. On the other hand, for the Primefaces DataTable you can select
which list from the data class will be used as data source for the table.

Visual Markers

The graphical view displays overlay markers for some elements:

• CMS markers are displayed if you use the CMS for displaying text or an image. This helps you to verify very fast whether
your JSF page is properly translated/internationalized.

• Data binding markers are visible when the value of an input element is bound to a data element with an EL expression. You
can use these markers to verify whether all your inputs are bound to data or a backing bean.

• You see Logic mapping markers if you call a Html Dialog logic element in a button or link. Use these to verify if all your
actions are properly mapped to logic elements.

User Interface

229

Source View (Code)

For each element that has been dropped on the view the corresponding code is generated in the source. Alternatively you can
use the auto completion support in the source editor. Just enter the first letter(s) of a valid code fragment and a selection list
of matching elements pops up.

Content Assist (Ctrl+Space)

In addition to the auto completion support you get further assistance for writing expressions if you press Ctrl+Space on an
expression to get a pop-up with context aware list of proposed code fragments to select from.

Quick Fix (Ctrl+1)

There are Quick Fixes available to create missing events, methods and data attributes on the current Html Dialog. Simply
press Ctrl+1 on a logic or data expression respectively.

CMS Quick Assist (Ctrl+1)

There are Quick Assists available to create or use content objects in the current Html Dialog. Simply press Ctrl+1 on a text
attribute or on text between xml tags.

User Interface

230

Tip

If a new content object is created with the Quick Assist you can directly rename the created content object in
the Html Dialog Editor. Just type a new name and confirm with Enter, to abort the renaming press Esc.

CMS Drag & Drop support

CMS contents can directly be dragged from the CMS View into the Html Dialog Editor. The dropped content will be
automatically converted into a valid JSF tag or EL-expression. Currently the content types String and Text as well as all
Images-types support drag & drop operations.

Linking to CMS content (F3 or Ctrl)

There is a shortcut to navigate to CMS content. Simply press F3 on a ivy.cms.co(...) expression to jump to the corresponding
object in the CMS. Alternatively press Ctrl and click on the link.

Linking to Data Class (F3 or Ctrl)

There is a shortcut to navigate to a data class definition. Simply press F3 on a data.xyz expression to jump to the corresponding
Data Class. Alternatively press Ctrl and click on the link.

Linking to Logic (F3 or Ctrl)

There is a shortcut to navigate to a logic element definition. Simply press F3 on a logic.xyz expression to jump to the
corresponding logic element. Alternatively press Ctrl and click on the link.

Properties View

Together with the Html Dialog Editor you will want to use the Eclipse properties view to define attributes for the UI elements
of your dialog. Simply switch to the Process Development Perspective that will display the properties view at the bottom
left area of the workbench window.

Html Dialog View Types
An Html Dialog is either a page or a component. Both are complete Html Dialogs and have therefore their own view, model
(data class) and controller (logic). This concept allows to build up component oriented UI design.

Note

The templates for page and component are configured in the Html Preferences.

User Interface

231

Html Dialog Page

An Html Dialog page represents a full page that is finally displayed in the web browser. Therefore a page can be opened by
a User Dialog Process Step.

Html Dialog Layouts

An Html Dialog Page uses an Html Dialog Layout. An Html Dialog Layout is the concept of a master page that defines
a common layout for a number of similar dialogs. An Html Dialog Page references a layout and implements defined parts
of it. For example the layout provides the header- and footer-area whereas the content-area is individually implemented on
each dialog.

Axon.ivy brings a set of predefined layouts. The layout (together with the View Type) is chosen in the New User Dialog
wizard.

For more information about templating have a look at the official JSF documentation.

Custom Html Dialog Layouts

Axon.ivy is not limited to the usage of the built-in Html Dialog Layouts. Custom layouts can be added with small effort.

In order to add a custom layout - which is a normal .xhtml file - it needs to be stored into the folder webContent of the project.
In doing so, the custom layout can now be referenced as a layout inside an Html Dialog.

To make the custom layout show up in the New User Dialog wizard (for selection of the View Type), it must be stored in
the folder webContent/layouts of the project.

The folder structure of webContent/layouts should follow the following contract:

• webContent/layouts/[MyTemplateName].xhtml

• webContent/layouts/[A sub folder]/[for additional template content]

Html Dialog Component

A component can be embedded into other Html dialog or again in another component.

View Definition

The view consists of two parts, an interface and the implementation. The interface is constituted by a <cc:interface
componentType="IvyComponent"> tag and is followed by an optional list of component attributes. The
implementation part starts with a <cc:implementation> tag and the component attributes can be accessed with the
expression cc.attrs.attributeName

The following code fragment defines an example Html Dialog component:

 <cc:interface componentType="IvyComponent">
 <cc:attribute name="caption" />
 </cc:interface>
 <cc:implementation>
 <p:fieldset legend="Address Component">
 <h:outputLabel value="#{cc.attrs.caption}" />
 <h:panelGrid columns="2">
 <p:outputLabel value="Street" for="street" />
 <p:outputLabel value="Country" for="country" />
 <p:inputText value="#{data.address.street}" id="street" />
 <p:inputText value="#{data.address.country}" id="country" />
 </h:panelGrid>
 </p:fieldset>
 </cc:implementation>

User Interface

232

Usage

A component could be inserted with the <ic:-tag. E.g. <ic:my.namespace.ComponentName ... />.

Tip

In the Html Dialog Editoryou have pretty nice tool support for inserting components. You can drag and drop
an available component from the palette. You can select one from the auto completion popup list and you can
define required attributes in the properties view.

Start Method

Optionally you can define the start method that should be used to start the embedded component with the attribute
startMethod. If you do not define the start method, then a default start method will be used. Parameters of the start method
can be defined by adding them as named attributes. Parameters are mapped by name, i.e. an attribute of the tag will be mapped
to the start method parameter with the same name. Furthermore you can set the component attributes that you defined in the
interface of the component by simply adding them as attributes of the tag too.

Note

You can not override start methods. So do not use multiple start methods with the same name but different
parameter lists.

See the following code fragment that inserts a Html Dialog component. The start method
start(data.person.BillingAddress:address) will be used, the current value of the data class property
billingAddress will be used as parameter for the start method and the component attribute caption will be set to the
value "Billing Address"

 <h:panelGrid columns="2">
 <ic:ch.ivyteam.htmldialog.demo.component.AddressComponent
 startMethod="start" address="#{data.person.billingAddress}"
 caption="Billing Address">
 </ic:ch.ivyteam.htmldialog.demo.component.AddressComponent>
 </h:panelGrid>

Html Dialog Preferences
In the Axon.ivy Designer preferences you can configure the templates used for the creation of Html Dialogs and Offline
Dialogs.

Note

There are different templates for Html Dialogs and Offline Dialogs. Whereas Html Dialog templates are targeted
to make use of the full JSF stack, Offline Dialog templates are designed to work without enduring connection
to the Engine and are optimized for use on rather small mobile devices with touch input.

Accessibility

Axon.ivy Designer Menu -> Windows -> Preferences -> Web -> HTML Files -> Editor -> Templates

Html Dialog View Type Templates

View Type Page and View Type Component are the predefined view types for Html Dialogs. Furthermore every template
with a name that starts with 'View Type' is considered as an Html Dialog View Type and therefore listed in the New User
Dialog Wizard.

Offline Dialogs have only one predefined view type called Offline View Type Page. Custom templates for Offline Dialogs
have to start with 'Offline View Type'

User Interface

233

Tip

When the template for a View Type contains <ui:composition template="${layout}">, it will be
a template for an Html Page. Otherwise it will be a template for an Html Component.

Form Field Templates

Every template with a name pattern 'form field [Type]' (for Html Dialogs) respectively 'offline form field [Type]' (for Offline
Dialogs) is considered as a form field template of the specified type. The form field templates are used during the creation
of a Html Dialog by the New User Dialog Wizard.

Tip

Each template can be inserted into an Html Dialog view via the auto complete function (CTRL+Space).

Html Dialog with Multiple Views
To implement a user interaction that consists of several pages (for example a wizard), one Html Dialog can be have multiple
views (.xhtml files). This allows to enclose a complex user interaction in one Html Dialog and to abstract it from the business
process.

How to add a view

In the New menu in the Axon.ivy project tree you find the New Html Dialog View wizard to add a view to a Html Dialog.
Just enter the name of the view and the xhtml file for the view is created and added to the Html Dialog. In the ivy project tree
all view files of a Html Dialog are displayed below the main node of that Html Dialog.

How to switch views during runtime

If you have created a Html Dialog with several views you have to implement the navigation between the views for the user
on your own. The basic solution is a commandButton with an update attribute to load the next view.

You find an example of a multi view Html Dialog in the HtmlDialogDemos project that is provided with the Axon.ivy
Designer.

<h:form id="myForm">
 <p:panel header="Multi View Demo" id="panel">
 <h3>Payment - Credit Card</h3>
 <p:messages id="msgs"/>
 <h:panelGrid columns="2">
 <p:outputLabel value="Credit Card Number"/>
 <p:inputMask required="true" value="#{data.creditCardNumber}"

User Interface

234

 id="CreditCardNumber" mask="9999-9999-9999-9999"></p:inputMask>
 </h:panelGrid>
 <p:commandButton value="Next" update="myForm" action="#{logic.nextView('CreditCard')}"/>
 </p:panel>
</h:form>

Converters
Converters are used to convert number or date/time values for string represnetation and vice versa. If you want to display a
Number or Date/DateTime process data attribute well formated in an input widget then use the basic converters provided
by the JSF core framework: convertNumber and convertDateTime.

See this code fragment from an input form:

<p:calendar id="Birthday" value="#{data.birthday}" navigator="true"
 required="true" pattern="dd.MM.yyyy">
 <f:convertDateTime pattern="dd.MM.yyyy" />
</p:calendar>

Custom Faces Converters

Custom Faces Converters can be implemented as a Java class with a specific FacesConverter annotation and then be
used in your Axon.ivy project.

Example:

 @FacesConverter("MyCustomFacesConverter")
 public class MyCustomFacesConverter implements Converter

Validators
The JSF core framework provides a number of basic validators that can be used to validate the entered values in an input form.

• validateDoubleRange

• validateLength

• validateLongRange

• validateRegex

• validateRequired

Example code fragment from an input form:

 <p:inputText value="#{data.zipCode}" id="ZipCode" required="true">
 <f:convertNumber integerOnly="true" groupingUsed="false"/>
 <f:validateLength minimum="4" maximum="5"/>
 </p:inputText>

Client Side Validation

In some cases it makes sense to perform the validation of the entered values before they are sent to server (e.g. in an Offline
Dialog). For this reason, Primefaces provides a client side validation framework. Client side validation is added as addition
to the JSF validators. Thus, it can give instant feedback - even while typing - to the user. Since the JSF validators (see above)
remain still active, the data is also validated on server side after the form has passed client side validation and is submitted.

http://www.primefaces.org/showcase/ui/csv/basic.xhtml

User Interface

235

Example code fragment from an input form:

 <p:inputText value="#{data.zipCode}" id="ZipCode" required="true">
 <f:convertNumber integerOnly="true" groupingUsed="false"/>
 <f:validateLength minimum="4" maximum="5"/>
 <p:clientValidator event="keyup" />
 <p:clientValidator event="blur" />
 </p:inputText>
 <p:message for="ZipCode" display="text" showDetail="true" />

 <p:commandButton actionListener="#{logic.close}" value="Proceed" validateClient="true" icon="ui-icon-check" />

Tip

It's useful, to add the client validators to the desired input field and also to trigger client side validation on the
submit button. This way you make sure, that client side validation is performed during field modification, but
also if the user tries to submit the from without any modification.

In order to provide a good instant feedback, a message element dedicated to the input field might be quite helpful.

Managed Beans
In Html Dialogs it is possible to communicate with normal Java objects by using ManagedBeans. Use the following
annotations to define the lifecycle scope of the managed bean:

• @ApplicationScoped - the bean instance is created at creation of the application or at the engine startup and destroyed
when the application is either deleted or the engine shuts down.

• @SessionScoped - the bean lives for the whole duration of the session

• @RequestScoped - an instance of the bean is created for each new request and thrown away after the response has been
sent. This is the default scope that will be used when no scope is set specifically.

Note

JSF 2.0 introduced an additional scope @ViewScoped and offers the possibility to define custom scopes. This
is basically also supported in Axon.ivy, but it is recommended to use it with care since it might not behave as
expected.

In the HtmlDialogDemo Project that is included in the Axon.ivy Designer you find an example.

Bean Validation (JSR 303)

The JSR 303 is a specification that defines a metadata model for Bean Validation. The fields of the JavaBean classes that are
used for storing the data are annotated to describe the constraints and their validation. Experienced programmers can use JSR
303 annotations in Axon.ivy projects. The validation information will then be considered by Html Dialogs when the field of
the class is bound to a widget. There is no validation information given in the *.xhtml file of the Html Dialog itself. However,
the Html Dialog uses the annotations of the fields to validate the user input.

All annotations defined in the package javax.validation.constraints are supported. For the validation messages you can use
Ivy macros to get the message content from the CMS. For example:

• @NotNull "means that a value is required"

• @Size "restricts the length of a string or array or the size of a collection or map"

• @Max "restricts the maximum allowed value"

• @Min "restricts the minimum allowed value"

User Interface

236

• @Pattern "restricts a string to a given regular expression"

• @Digits "restricts the maximum number of digits of the integer and faction part"

• @Future "restricts a date to the dates in the future"

• @Past "restricts a date to the dates in the past"

@SessionScoped
public class Person
{
 @Size(min=3, max=10, message="<%=ivy.cms.co(\"/ch.ivyteam.htmldialog.demo/BeanValidationDemo/between3And10Characters\")%>")
 @NotNull(message="<%=ivy.cms.co(\"/ch.ivyteam.htmldialog.demo/BeanValidationDemo/notnull\")%>")
 private String name;

 @Pattern(regexp="[1-9][0-9]{2}\\.[0-9]{2}\\.[1-8]([0-8][0-9]|9[012])\\.[0-9]{3}", message="<%=ivy.cms.co(\"/ch.ivyteam.htmldialog.demo/BeanValidationDemo/socialSecurityNumber\")%>")
 @NotNull(message="<%=ivy.cms.co(\"/ch.ivyteam.htmldialog.demo/BeanValidationDemo/notnull\")%>")
 private String socialSecurityNumber;

There will always be validation requirements for which these standard annotation will not suffice. For these cases it is possible
to create your own annotation. You find an example in the HtmlDialogDemo project that is included in the Axon.ivy Designer.

public class Person
{
 @LicensePlate(message="<%=ivy.cms.co(\"/ch.ivyteam.htmldialog.demo/BeanValidationDemo/licensePlate\")%>")
 private String vehicleLicense;

// re-use other existing constraints:
@NotNull
@Size(min=4, max=20)
@UpperCase // custom constraint in same package
@StartsWith(prefix="ZG") // custom constraint in same package

//only show the validation message from this annotation and not from it's re-used types:
@ReportAsSingleViolation

@Target({ METHOD, FIELD, ANNOTATION_TYPE })
@Retention(RUNTIME)
@Constraint(validatedBy = {})
@Documented
public @interface LicensePlate {
 String message() default "Field does not contain a valid license plate";
 Class<?>[] groups() default {};
 public abstract Class<? extends Payload>[] payload() default {};
}

Ajax Method Call API
Methods of a Html Dialog can be called with JavaScript through a REST like Interface. This Ajax method call API of Axon.ivy
can be used to integrate JavaScript libraries like D3, jQuery or your own JavaScript scripts. See the Ajax Method Call Demo
in the Html Dialog Demo Project:

 <script type="text/javascript">
 // jQuery is used to intercept the click on the Button with id #hello
 $("#hello").click(function(){

 // The ivyajaxapi.js script provides the logic object,
 // which contains a function for each method available on the dialogs interface.
 // If you would like to use the REST API in a more advanced way or without jQuery,
 // have a look at the generated ivyajaxapi.js script to see how the REST API is used.

User Interface

237

 logic.helloWorld(

 // The first parameter is a data structure, which represents the list of parameters
 {"name": "World"},

 // The second parameter is a function, which is called on a successful response.
 function(returnData)
 {
 // returnData is a JavaScript Object containing one field for each Method return value.
 // returnData.result accesses the return value named result.
 $("#result").html(returnData.result);
 });
 });
 </script>

Error Handling
The exception handling in HTML Dialogs can be customized. Depending on the request type the customization differs.

HTTP Request

If an exception occurs in a non-ajax HTTP request, the user will be redirected to the specified error page. The customization
of these error pages is described in the chapter Configuration / Error Handling of the engine guide.

AJAX Request

If an exception occurs in an ajax-based HTTP request, the configured Primefaces ajax exception handlers comes into play.
The handler must be defined as part of the *.xhtml file. In the provided standard layouts, handlers are already configured. See
webContent/layouts/includes/exception.xhtml for details.

<p:ajaxExceptionHandler update="ajaxExceptionDialog" onexception="PF('ajaxExceptionDialog').show();"/>

The above ajax exception handler will catch every exception of every type. If an exception occurs the action in onexception
will be executed. In this example, a Primeface dialog will be shown.

<p:p:dialog id="ajaxExceptionDialog" header="Error" widgetVar="ajaxExceptionDialog" height="400px">
 <p:h:outputText value="Error Id: #{errorPage.exceptionId}"/>
 <p:br/>
 ...
<p:/p:dialog>

The errorPage bean is available within the ajax exception handling. Properties like exceptionId or message can be
used to provide specific error information to the user.

View Expired Exception

If the view or the session of a user expires then there is a possibility to catch that exception with a specialized ajax exception
handler. Instead of catching all exceptions you can specify the type of the exception to catch.

<p:ajaxExceptionHandler
 type="javax.faces.application.ViewExpiredException"
 update="viewExpiredExceptionDialog"
 onexception="PF('viewExpiredExceptionDialog').show();"/>

This handler will only catch exceptions of type javax.faces.application.ViewExpiredException. The
exception handler with the most specific type of exception will be used.

<p:dialog id="viewExpiredExceptionDialog" header="View or Session Expired" widgetVar="viewExpiredExceptionDialog" height="50px">
 <h:outputText value="The view or session has expired."/>

 <h:outputLink value="#{ivy.html.loginRef()}">Please login again.</h:outputLink>

User Interface

238

</p:dialog>

Rich Dialogs
A Rich Dialog (in the following abbreviated as RD) is one of two possibilities to implement a User Dialog Component. RDs
are implemented in Axon.ivy using a Rich Internet Applications technology from Canoo with the name ULC

Process based Rich Dialogs
Process based Rich Dialogs are components that follow the MVC based User Dialogs of Axon.ivy. But Rich Dialogs differ
in some portions to normal User Dialogs.

The 4-part structure of a process based Rich Dialog becomes also evident when looking at it's representation in the project tree:

Logic

Like for all other User Dialogs, the logic of a Rich Dialog defines how a Rich Dialog performs its work by means of a process
model. But in addition to UI Events, Start Methods and Methods also the Fired Event and Accepted Broadcast that are defined
on the interface are implemented as a process.

For Rich Dialogs, the Process Editor offers a few additional elements. The User Dialog drawer of the Process Editor palette
contains elements, which can only be used within the Rich Dialog logic:

Icon Title Short Description

Broadcast Start Invoked when the Rich Dialog receives
an accepted broadcast event as declared
on it's interface

Script Encapsulates IvyScript code or changes
in the Rich Dialog data (replaces the
normal Script element).

Fire Event Fires one of the events declared on this
Rich Dialog's Interface.

Table 6.3. Process elements only available in Rich Dialog Logic

Data

For Rich Dialogs, you have extended Data Binding support for automatic update or synchronization.

Panel

The panel represents the UI of a Rich Dialog, it defines the screen mask with which the user interacts.

The panel of a Rich Dialog is edited with the Visual Editor.

The UI of a Rich Dialog consists of multiple widgets, such as buttons, labels and text fields, which can be nested and grouped
using containers with a specific layout.

Different widgets offer different events that are triggered when the user interacts with the application (i.e. clicking a button).
Those events can be mapped to event process starts, where they invoke a process in the Rich Dialog Logic and thus may
change internal data or perform other work.

All widgets of a Rich Dialog offer certain properties which can be manipulated using the Widget Configuration View.
Properties of the panel's widgets can also be bound to the Rich Dialog data for automatic update if either the UI (e.g. user
enters input on a text field widget) or the mapped data (e.g. data of a list is read from a Web Service) changes.

http://www.canoo.com/
http://ulc.canoo.com

User Interface

239

Data Binding

Data binding is a mechanism that allows to map (i.e. bind) widget properties and Rich Dialog data either two-way or one
way. If a widget property is bound to a data field it will be updated whenever one of the two changes. This process happens
automatically; once a binding is defined, the programmer no longer needs to update the fields explicitly.

We differentiate two kinds of data binding: UI-to-Data and Data-to-UI. UI-to-Data bindings are responsible for updating the
Rich Dialog data fields, based on the current value of the UI. The are also called downbinding. On the other hand, Data-
to-UI bindings are responsible for updating parts of the Rich Dialog panel if internal data changes. This kind of binding is
also called upbinding.

The downbinding is performed whenever a process in the Rich Dialog logic is triggered (with the exception of the Rich Dialog
Start method). An upbinding is performed whenever a process in the Rich Dialog logic ends.

Note

It is very important to understand that data binding is only performed if a process inside the Rich Dialog logic
is executed! Normally an upbinding takes place the first time at the end of the Rich Dialog Start method.

Data bindings are defined either indirectly with the Widget Configuration View or directly inside the Data Binding View.

Event Mapping

Event mappings "attach" the UI of a Rich Dialog to it's implementation, by defining links between widget events and processes
that will be executed when those events are triggered. Every widget on a Rich Dialog Panel offers a different set of events
that it can generate (e.g. clicking on a button or hitting a key inside a text field) and each of those events can be mapped
individually to an Event Start element in the Rich Dialog Logic.

Event mappings are a potential n:m (many-to-many) association between the Rich Dialog Panel and the Rich Dialog Logic.
In other words: different events from different widgets can be mapped onto the same process start, and also a single event
can be mapped to multiple process starts.

Events are generally executed synchronous (see the default Delivery Mode below). If a synchronous event is executed, then
the UI will be blocked until the mapped process has finished. If a asynchronous event is executed, then the UI will stay
responsive during the execution of the mapped process. Because the UI stays responsive more events can be triggered during
the execution of the first event. It is ensured that the execution order of the events is always chronological and no events
are executed in parallel.

Event Delivery Mode

Key-Event Asynchronous

Focus-Events Asynchronous

Others Synchronous

Table 6.4. Default Event Delivery Mode

To change the default behaviour the Delivery Mode can be set for each component by API, see:
ClientContext.setEventDeliveryMode(...).

Note

Per default the Event Delivery Mode is synchronous. The Default Event Delivery Mode in the table above is only
valid, when at least one corresponding Event Mapping exists for this event. Therefore, if an event listener is
added manually (e.g. in the Rich Dialog Java Code) but no corresponding event-mapping exists, then the Event
Delivery Mode for the event is synchronous.

Warning

Please note, changing the Event Delivery Mode to asynchronous can result to inconsistent data and it will be
hard to debug such problems.

User Interface

240

Existing event mappings of a Rich Dialog can be inspected with the Event Mapping View. New event mappings are created
with the New Event Mapping Wizard.

Rich Dialog Interface Editor

Interface tab

In addition to the normal User Dialog Interface Editor, the Rich Dialog Interface Editor consists of two more sections, the
declaration of Fired Events and Accepted Broadcasts.

Fired Events

The Fired Events section defines the events that the given Rich Dialog is capable of firing during it's lifetime. An event has a
name and may carry one optional parameter. When fired, it is distributed to the correct recipients according to the specified
scope.

When a new Fired Event is added (or edited) you must provide a name on the first page of the wizard dialog.

The second page of the wizard is used to define a scope for the distribution of the event and one optional parameter that can
be passed along with the event (i.e. an attachment).

The scope of a Fired Event can be one of the following:

SUBSCRIBERS (no broadcast) The Fired Event will not be distributed as Broadcast event. Only selected components
that had themselves registered for the specific event at the Rich Dialog will be notified.

CHILDREN (broadcast) All embedded Rich Dialogs (and their children) will be informed about the Rich Dialog
Fired event. This includes the dynamically loaded Rich Dialogs that are located on any
Display below the current Rich Dialog.

User Interface

241

SIBLINGS (broadcast) All Rich Dialogs that are located on the same component hierarchy as the current Rich
Dialog will be notified about the fired event. This includes the dynamically loaded Rich
Dialogs that may be located on the same Display as the current Rich Dialog as well as
any other embedded Rich Dialogs with the same parent Rich Dialog.

APPLICATION (broadcast) All Rich Dialogs of the current application that are instantiated in the current user
session will be informed, no matter whether located on the same window or in a
different window.

SYSTEM (broadcast) All Rich Dialogs that are instantiated for the current application instance will be
informed, across all user sessions. This scope is identical to APPLICATION, but
with the difference that all sessions (not just the current one) will be included in the
broadcast. Check out the section about system events to learn more about this concept.

Tip

The selected scope is shown with an @ sign in the Fired Events list of the interface. If the selected scope is a
broadcast scope, then a satellite dish icon is displayed in front of the entry.

Please note that the event can only be processed if it is declared with a matching signature (i.e. name/parameter
combination) in the Accepted Broadcast section in the interface of any potentially receiving Rich Dialog!

Note

The Fired Events defined for a Rich Dialog are selectable inside any Rich Dialog Fire Event Element that is
located in the logic of the defining Rich Dialog. The element also allows to specify the (optional) parameter
object that should be sent along with the event:

Alternatively all defined Fired Events can also be specified by means of scripting. For each declared event there
is a fireXYZ method available on the panel variable of the Rich Dialog that defines it, e.g.:

 panel.fireMyEvent(in.myMessage);
 // if no parameter should be passed
 panel.fireMyEvent();

Accepted Broadcasts

The Accepted Broadcasts section defines the broadcast events that the given Rich Dialog is interested in receiving. For each
accepted broadcast at least a name must be given.

By defining the type of the optional event parameter an additional filter can be defined. In other words: if
logOpened(Number)l is defined as an Accepted Broadcast, then any received events with the name logOpened but
with a parameter of type String (instead of the required Number) will be ignored.

The declaration of an Accepted Broadcast works similar to the declaration of Fired Events and Rich Dialog Methods explained
above.

User Interface

242

Note

The Accepted Broadcasts declared for a Rich Dialog are selectable inside any Rich Dialog Broadcast Start
Element that are located in the logic of the defining Rich Dialog.

Please note, that each Accepted Broadcast can only be mapped once. A declared accepted broadcast event will
no longer be selectable (i.e. will not be shown for selection) if it is already mapped in another Broadcast Start
element.

See description of the Rich Dialog Broadcast Start Element to learn about how to access the optional event
parameter object.

Metadata tab

For Rich Dialogs it is possible to store a screenshot in the metadata. If create screenshot automatically is checked, every time
the panel of the rich dialog is saved, the screenshot is replaced with the actual one.

Using the Change button you can replace the automatically created screenshot with your own. Don't forget to uncheck create
screenshot automatically if you want to keep your screenshot after the next change of the panel.

Rich Dialog Editor

Overview

The Rich Dialog editor (also called Visual Editor) allows to compose and edit the visual representation of a Rich Dialog (i.e.
it's Panel). The panel editor consists of an editor area and a palette with drawers. Widgets (i.e. UI elements) can be dragged
from the various palette drawers and be dropped onto the panel. Rearrangement of already positioned widgets is also possible.
Container widgets can be used to arrange related widgets and support different layout policies for its members.

The Rich Dialog editor consists of two areas: the actual Editor Area and the Palette where the widgets to build the UI can be
selected. Both are described in more detail in the sections below.

Accessibility

Axon.ivy Project Tree -> double click on the Panel node below a Rich Dialog in the tree:

User Interface

243

Editor Area

The Rich Dialog editor offers two modes for editing a Rich Dialog panel: Design and Source.

Design Mode

The design mode of the Rich Dialog editor allows to compose Rich Dialog panels in a WYSIWYG (what you see is what you
get) mode by selecting a widget from the palette and positioning it on the panel area. Similarly, already positioned elements
can be dragged to another position on the panel, simply by selecting and dragging them with the mouse. The layout of the
used containers defines the way how widgets are positioned in the final end. By default, the top level container (i.e. the panel
itself) has a GridBagLayout. If you are not used to Layouts and Layout Managers, please read the related section.

The different container layouts are explained in the following Layout Managers section.

Note

The widgets that are positioned on the panel area and sub containers thereof form a hierarchical structure that
can be inspected with the Rich Dialog editor Beans view. Positioned elements can also be selected in this view,
which may sometimes be necessary, if e.g. a container widget is completely covered by other widgets and can
thus no longer be selected on the visual representation.

Source Mode

All visual content which is created by using the Rich Dialog editor is transformed into Java code in the background. The
Java code that describes and creates the panel UI can also be edited directly. To do so, you simply select the Source tab at
the bottom of the editor area:

Warning

Be very careful if you edit the source code of a panel directly! The Rich Dialog editor requires a very strict coding
convention and may fail to re-parse the source if that convention is not followed. In such a case the panel can no
longer be visually edited. In general it is strongly discouraged to edit the code of a Rich Dialog panel manually.

User Interface

244

Widget Palette

The palette offers some special operations.

Operation Description

This is the default mode. If selection is enabled then the mouse
pointer will select single elements in the editor area only.
Nonetheless, you can select multiple widgets by keeping the
CTRL key pressed down.

This is the multi-selection mode, it is not selected by default.
If enabled, the mouse spans up a selection area which allows
to select multiple widgets at once. Please note that the
Axon.ivy Widget Configuration currently does not permit to
alter properties of multiple selected widgets.

The Choose Bean operation can be used to insert (ULC)
widgets that are not available from the palette. In fact this
operation allows to insert arbitrary Java objects from classes
that adhere to the Java Bean standard (see Sun Java Beans
home page for more information). The usage of this operation
is only recommended for advanced users.

By default, the Rich Dialog editor palette drawers do close if
another drawer is opened. Clicking the pin of a drawer keeps
the drawer always open, even if other drawers are opened.
The available vertical space is then divided evenly among all
opened and pinned drawers.

Table 6.5. Palette Operations

Containers are widgets that allow to group widgets (including other containers) together using a specific layout.

Widget Name/Link Short Description

RBorderLayoutPane Groups widgets with a border layout
(north,east,south,west,center).

RBoxPane Groups widgets with a box layout.

RCardPane Holds multiple sub-components in a
"card stack" (only the top most
component is visible).

RCollapsiblePane A panel that can expand and collapse a
single sub component.

RFlowLayoutPane Groups widgets with a flow layout.

RGridLayoutPane Groups widgets with a grid layout (cells
of equal size arranged in rows and
columns).

RGridBagLayoutPane Groups widgets with a grid bag layout.
This is the most flexible layout pane of
all.

RScrollPane Holds a single sub-component. Allows
to scroll that component if it is larger
than the available space.

RSplitPane Holds two components in a vertical or
horizontally split area which is separated
by a slider.

http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp
http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp

User Interface

245

Widget Name/Link Short Description

RTabbedPane Holds multiple sub-components in
register tabs (only top component is
fully visible, other components can be
selected by tab).

RTaskPaneContainer A container for Task Panes only.

RTaskPane Similar to Collapsible Pane but with
a title bar and collapse/expand button.
Intended to be used with Task Pane
Container.

RToolBar Groups widgets (typically buttons with
an icon) in a tool bar fashion.

Table 6.6. Containers

Regular widgets are the atomic building blocks of a Rich Dialog user interface. They provide functionality to enter, edit and
display data in various ways.

Widget Name/Link Short Description

RButton A button with text and/or icon.

RCheckBox A check box to select or deselect an
option.

RComboBox A combo box offers to select one item
from a list of options.

RDatePicker Enter or select a date from a pop-up
calendar.

RFiller A component that takes up space, either
flexibly or fixed-size.

RHtmlPane A multi line label which can render
HTML.

RHyperLink A label with a hyperlink that can be
clicked.

RLabel A (single line) label with text.

RList List of arbitrary size which allows to
select elements with text and optional
image.

RLookupTextField A text field that shows a list of hints
while typing.

RPasswordField An encrypted text field to enter sensitive
data.

RProgressBar Shows progress (relative or indefinite).

RRadioButton A radio button (used in combination with
a Button Group to select exactly one item
from a list of options).

RScrollBar A scrollbar (can be used to select a
position).

RSlider Allows to select from a range of
numerical values.

RTable Displays data in a spread sheet fashion,
i.e. cells arranged in columns and rows.

User Interface

246

Widget Name/Link Short Description

RTableTree A combination of RTree and RTableTree
where the first column of the displayed
table contains a tree.

RTextArea A multi-line input text field.

RTextField A single-line text input field.

RToggleButton A button that stays on or off.

RTree Displays data in a hierarchical way.

RBrowser An embedded browser that can be used
to display HTML pages from an URL.

Table 6.7. Widgets

Menus are widgets that offer a selection of options for the user to select. Menus can be offered either as pop up menus or
as part of a menu bar on the panel.

Widget Name/Link Short Description

RMenuBar A common menu bar that may contain
multiple menus.

RMenu Groups different menu items together,
intended to be used in an RMenuBar.

RPopupMenu Defines a context menu that can pop up
anywhere on a component (e.g. on right
mouse click).

RMenuSeparator A menu item used to separate groups of
other menu entries.

RMenuItem A regular menu item for use inside a
RMenu or a RPopupMenu.

RCheckBoxMenuItem A menu item with a check box, use
for options that can be selected or
deselected.

RRadioButtonMenuItem A menu item with a radio button, use to
select exactly one from multiple options.

Table 6.8. Menus

Displays are place holders on a panel that serve as target locations for the dynamic loading of Rich Dialogs at runtime.

Widget Name/Link Short Description

RTabbedDisplay Shows dynamically loaded Rich Dialogs
as tabs on a tabbed pane.

RCardDisplay Shows dynamically loaded Rich Dialogs
on a card stack, i.e. only top Rich Dialog
is visible.

RTaskPaneDisplay Shows dynamically loaded Rich Dialogs
as expandable/collapsible panels on a
task pane container.

RListDisplay Shows dynamically loaded Rich Dialogs
in a scrollable list.

Table 6.9. Displays

User Interface

247

Non visual Components are UI elements that do not have a visual representation. They may serve as supporting objects for
visual components and are placed next to the panel rather than onto it. The user can not see those objects on his screen.

Widget Name/Link Short Description

ButtonGroup Logically groups exclusively selectable
widgets such as RRadioButton. Ensures
that not more than one element from the
group is selected at the same time.

Table 6.10. Non visual Components

Cell Widgets are elements for table editing, used for displaying an manipulate data of a RTable.

Widget Name/Link Short Description

RTextFieldCellWidget A single-line text input field.

RComboBoxCellWidget A combo box offers to select one item
from a list of options.

RBooleanCellWidget A check box to display or change the
boolean cell value.

RButtonCellWidget A Button to start an action with a text.
The cell value are displayed as text.

Table 6.11. Cell Widgets

Tip

If you right-click on a palette drawer or palette entry, a popup-menu opens which allows you to configure the
appearance and the behavior of the palette.

For example, all entries can be displayed by their icons only. This saves a lot of space and allows you to keep all
drawers open at the same time to access all widgets at once. It is recommended that you try some of the palette
settings until you find a configuration that suits your personal needs. The configuration is saved and reused for
all projects in this workspace.

Layout Managers

Components in a container are arranged according to the layout manager that the specific container is using. Layout managers
are mainly responsible for arranging the widgets within a container, and especially for re-arranging if the size of the container
changes (e.g. if the size of a window is changed, then the layout of all the contained components will be done again).

The Rich Dialog editor offers containers with different layouts (all links are pointing to pages of the Sun Java Swing Tutorial):

Layout Name Short Description

Border Layout BorderLayout object has five areas: NORTH, EAST,
SOUTH, WEST and CENTER. If the window is enlarged, the
center area gets as much of the available space as possible.
The other areas expand only as much as necessary to fill all
available space. Often a container uses only one or two of
the areas of the BorderLayout object — just the center,
or the center and the bottom. See Border Layout for more
information.

http://java.sun.com/docs/books/tutorial/uiswing
http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#border

User Interface

248

Layout Name Short Description

Box Layout BoxLayout either stacks its components on top of each other
or places them in a row — your choice. You might think of it
as a version of FlowLayout, but with greater functionality.
Working with nested box layout containers is very similar to
working with HTML tables for layouting. See Box Layout for
more information.

Card Layout The CardLayout class manages two or more components
(usually other containers) that share the same display
space. Only the component on top is visible. The stacked
components that are not visible can be shown by setting
properties on the CardLayoutPane. See Card Layout for more
information

Flow Layout The FlowLayout class puts components in a row and sizes
them according to their preferred size. If the horizontal space
in the container is too small to put all the components in one
row, the FlowLayout class uses multiple rows. By default,
if the container is wider than necessary, the row is centered
horizontally within the container. See Flow Layout for more
information.

Grid Layout A GridLayout object places components in a grid of cells.
Each component takes all the available space within its cell,
and each cell has exactly the same size. If the window is
resized, the GridLayout object changes the cell size so that
the cells are as large as possible in relation to the given space.
See Grid Layout for more information.

GridBag Layout GridBagLayout is one of the most flexible — and
complex — layout managers of Swing. A GridBagLayout
layouts components in a grid of rows and columns, allowing
specified components to span multiple rows or columns. Not
all rows necessarily have the same height. Similarly, not
all columns necessarily have the same width. Essentially,
GridBagLayout places components in rectangles (cells)
in a grid, and then uses the components' preferred sizes to
determine how big the cells should be. See GridBag Layout
for more information.

Table 6.12. Summary of different Layout Managers

Tip

Because GridBagLayout is the most powerful and flexible layout available, it is generally recommended to use
a GridBagLayoutPane as container, unless specific demands are favouring another layout manager.

Warning

Once you've selected a layout it is not so easy to change it again afterwards. So you should quickly think about
your layout requirements before selecting a specific layout.

Java Beans View

Overview

The Java Beans View (or just Beans View for short) is used to visualize the structural hierarchy of all widgets on the Rich
Dialog. It can be used as an alternative to the Rich Dialog editor area when dropping or arranging widgets from the palette.

http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#box
http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#card
http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#flow
http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#grid
http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#gridbag

User Interface

249

Inside the Rich Dialog editor it can sometimes be impossible to select a container with the mouse if it's children are maximized;
i.e. completely cover the space of their parent container. In such a case the "covered" component can still be selected inside
the Java Beans view. The same holds true for components that are located inside a container that uses a layout hides it's child
components (examples are RCardPane or RMenu).

Accessibility

Window -> Show View -> Other... -> Java -> Java Beans

Features

Synchronize
Will synchronize the selection in the Java Beans view and in Rich Dialog editor area.

Collapse All

Will collapse the widget hierarchy tree completely.

Overview

Shows an overview (thumbnail) of the edited panel. May be helpful if the Rich Dialog editor area is too
small to show the whole edited panel. The view point of the editor (shown as blue area over the panel)
can be dragged around (watch the Rich Dialog editor scroll while doing this). Positioning of the view
point only works if editor area is smaller than the panel.

(Rich Dialog Editor) Properties View

Overview

The Properties view of the Rich Dialog editor offers an alternative way to the Widget Configuration View for setting the
properties of a widget. The view will always show the available properties for the currently selected widget (Java Beans view
and/or Rich Dialog editor).

User Interface

250

Warning

The Properties view shows and allows to alter the complete set of properties and attributes of widgets. Most
of them are of no relevance for the creation of applications with Axon.ivy. The explanation of all available
properties for each widget type goes far beyond the scope of this document and is thus generally left undone.

The reason why the Properties view is available to the user, is that currently not (yet) all relevant properties can
be edited through the Widget Configuration View. Some of the properties that are documented in the Widget
Reference chapter, you have to set or alter inside the Properties view because there is currently no other way
to do it.

Generally, however, we strongly discourage the usage of the Properties view. One reason being that it offers far
too much information and at the same time is less powerful than the widget configuration view. Another reason
being that some harm may be done if undocumented attributes are altered without a complete understanding
of the consequences.

Accessibility

Window -> Show View -> Properties

Features

Show Advanced Properties
Will show even more properties for the currently selected widget.

Collapse All
Restores the default value for the currently selected property, if defined.

Overview
Sets the currently edited property value to null.

Widget Configuration View

Overview

In the Axon.ivy Widget Configuration view you can manipulate the most important configuration issues of the selected widget
in the Rich Dialog editor or Java Beans view.

Figure 6.3. The Widget Configuration View

Note

Open the Properties View to configure advanced properties that are not visible in the Widget Configuration.

User Interface

251

Accessibility

Window -> show View -> Widget Configuration

Features

The configuration is split up in several tabs, which depend on the selected Widget. In this section all the tabs are described.

Tab General

Overview

The General tab groups together general properties that all Widgets have in common.

Figure 6.4. The General tab

Accessibility

Window -> show View -> Widget Configuration -> General

Features

Note

Enter IvyScript into a IvyScript text field if the background color of the text field is yellow, enter IvyScript
macros if the background is blue and enter normal text if the background is white.

Properties Enabledt: Enter a IvyScript that evaluates to a boolean to set the enabling of the widget.

Visible: Enter a IvyScript that evaluates to a boolean to set the visibility of the widget.

Tooltip: Enter the tool tip for the widget, IvyScript macros syntax may be used.

Tab Style

Overview

The Style tab shows the graphical user interface style information for the selected widget. This includes formatting options
such as colors or fonts, positioning options for alignment, filling of empty space or inset size and as well graphical options
such as border style and color.

User Interface

252

Figure 6.5. The Style tab

Accessibility

Window -> show View -> Widget Configuration -> Style

Features

In the first section you can select a reference to a predefined style configuration in your project. You are also able to select
a style configuration from a dependent project. The edit button opens the configuration editor on the currently selected style.
You can then edit that style or define a new one before returning to the widget's style configuration. See here for information
about how to create your own style configurations.

In the second section you define style parameters that are only applied to the current selected widget. The table shows you,
how the widget is configured at the moment. If the widget inherits a style from the global style configuration, then a light
gray value will be displayed in the table cell.

Note

Use the configuration editor to configure styles that all widgets of the same type have in common. E.g. set the
fill characteristic for all scroll panes to FILL_BOTH in the configuration editor.

Warning

Do not use the properties view to set style properties, unless the property you want to adjust is not on the widget
configuration.

Data Binding Tab

The Data Binding tab shows a table displaying all data bindings that depends on the selected widget. See the Data Binding
View section for more information.

Tab Text/Icon

Overview

The Text/Icon tab shows the configuration for text/icon based widgets like buttons and labels.

User Interface

253

Figure 6.6. The Text/Icon tab

Accessibility

Window -> show View -> Widget Configuration -> Text/Icons

Features

properties Text: The text displayed on the widget (e.g. button)

Icon-Uri: Default icon displayed next to the text on the widget. Access the icons from the CMS via the
ivy.cms.cr function.

Pressed Icon-Uri: The icon that should be displayed if the button was pressed. If this field is empty, then
the default icon from the text field Icon-Uri is displayed.

Rollover Icon-Uri: The icon that should be displayed if the mouse is over the widget. If this field is empty,
then the default icon from the text field Icon-Uri is displayed.

Selected Icon-Uri: The icon that should be displayed if the widget is selected. If this field is empty, then
the default icon from the text field Icon-Uri is displayed.

Tab ComboBox Data

Overview

On the ComboBox Data tab you configure what to show in the combo box. You can configure the label, icon and the tool
tip text for each entry in the combo box.

User Interface

254

Figure 6.7. The ComboBox Data tab

Accessibility

Window -> show View -> Widget Configuration -> ComboBox Data

Features

sections Source: Select the type of the source for your combo box. Either List or Recordset. Define in the IvyScript
text field the path to your source.

Display String: Use the IvyScript text field to enter what text to show for each entry in the combo box.

Display Icon: Use the IvyScript text field to enter which icon to show for each entry in the combo box, if any.

Tool tip: Use the IvyScript text field to enter what text to show as tool tip for each entry in the combo box.

Empty table text: Enter a plain text that will be displayed if the data source is empty.

Tab Lookup Data

Overview

On the Lookup Data tab you configure what to use in the lookup list of the lookup text field. A lookup text field shows
only entries of the look list that match the search criteria specified in the RLookupTextField. You can set up the filter that
interprets what the user types and searches accordingly. Per default a filter is set that filters the lookup list according to the
user input with following characteristics. It searches case insensitive, and assumes free text between two words user types
(e.g. typing "sun time" would show up lookup entries like "Sunday times", or "monsoon weather sometimes"). Right now
you can configure the way the displayed text entries in the lookup list should be calculated using the listData (or recordData)
just like on the combo box or on the list.

User Interface

255

Figure 6.8. The Lookup Data tab

Accessibility

Window -> show View -> Widget Configuration -> Lookup Data

Features

sections Source: Select the type of the source for your combo box. Either List or Recordset. Define in the IvyScript
text field the path to your source.

Display String: Use the IvyScript text field to enter what text to show for each entry in the lookup text field's
lookup list (that appears when the user types a search expression).

Tab List Data

Overview

On the List Data tab you configure what content to show in the list widget. You can configure the label, icon and the tool
tip text for each entry in the List.

Figure 6.9. The List Data tab

Accessibility

Window -> show View -> Widget Configuration -> List Data

User Interface

256

Features

sections Source: Select the type of the source for your list. Either List or Recordset. Define in the IvyScript text
field the path to your source.

Display String: Use the IvyScript text field to enter what text to show for each entry in the list.

Display Icon: Use the IvyScript text field to enter which icon to show for each entry in the list, if any.

Tool Tip: Use the IvyScript text field to enter what text to show as tool tip for each entry in the list.

Empty Widget Text: Enter a plain text that will be displayed if the data source is empty.

Tab Table Data

Overview

On the Table Data tab you configure what content to show in the table. You can configure the data source for the table, but
you can too filter the source to show only a certain part of the data source. Furthermore, you can influence the visual look and
feel and set options such as label texts, icons and tool tip texts for each entry in the table.

Figure 6.10. The Table Data tab

Accessibility

Window -> show View -> Widget Configuration -> Table Data

Features

Source Select the type of the source for your Table. Either List or Recordset. Define in the IvyScript
text field the path to your source.

Table column: Columns Field: Define the name of the field of your data source to map to the current column.
If your data source is a list, then the list elements (i.e. the runtime data class(es) of all
list members) must contain a field with the configured name. If your data source is
a recordset, then the records must have a field with the configured name. The value
of the field is mapped to the variable value which you can use in the IvyScript
text field.

Header: Enter a text to display as header of the column. Use IvyScript macros if
needed. example: <%=ivy.cms.co("/labels/header")%>. Note hat this
has only an effect if the Show Header check box is selected.

User Interface

257

Header Align: Select the alignment of the header text (default, left, center, right).
Note that this has only an effect if the Show Header check box is selected.

Value: Enter a IvyScript expression to configure what label that should be displayed
in the table cell.

Tool tip: Enter a IvyScript expression to configure what tool tip text that should be
displayed in the table cell.

Icon: Enter a IvyScript expression to configure which icon should be displayed in
the table cell.

Visible: Enter a IvyScript expression which results in a Boolean value, to configure
the visibility of the column.

Editable: Enter a IvyScript expression which evaluates to a Boolean value, to
configure the editable-state of the column. Note: also a simple true or false is
allowed.

Width: Enter the number of pixels the column should have in width, only works if
the configured autoResizeMode is set to AUTO_RESIZE_OFF

Cell Style: Select a table cell style if needed. To create new table cell styles use the
configuration editor.

Cell Widget: Select a cell widget to customize the table cell rendering and editing.
The cell widgets must be created in the Visual Editor, placed beside the panel. Each
created cell widget must only be used once.

Actions Add: Adds a new column configuration to your table definition. The column
configuration will be shown as row in the table columns configuration.

Remove: Removes the selected column configuration from your table columns
configuration.

Up: Moves a table columns configuration up in the table. This means that the column
moves one position to the left in the resulting table.

Down: Moves a table columns configuration down in the table. This means that the
column moves one position to the right in the resulting table.

Show header: Activate this check box if you want your table to have a header row.

Autom. header: Activate this check box if you want the system to label your
headers.

Show icons: Activate this check box if you want to decorate your table with icons.

Show tool tip: Activate this check box if you want your table to support tool tips
per table cell.

Sortable: Activate this check box if you want your table to be sortable. Clicking on
the header of a column triggers then a sorting of the whole table according to the
selected column.

Empty widget Text Enter a plain text that will be displayed if the data source is empty. Note that the column titles
will be hidden when the text is shown.

User Interface

258

Note

When a entry of a data source was changed, a call to elementChangedAt() on the source is needed. Otherwise
the UI will not be updated. This is only required when the effected entry was not added to the list and the change
of the entry has an effect to the UI.

Short example: When a list myList is bound to a RTable, after the instruction
myList.get(x).myAttribute = 123 a call to myList.elementChangedAt(x) is needed,
otherwise the new value 123 isn't displayed in the UI.

Note

When an expression of a column definition includes the in-object AND a row-based variable (entry,
recordset or value) and only the in-attribute has changed, then you have to call RTable.refresh() in order
the changes getting effect on the UI. Otherwise there is no guarantee, that the ui side is up to date after the
data binding.

Short example: An editable expression looks like: "in.editable && entry.editable", when now only
the attribute in.editable has changed, a call to RTable.refresh() is required. Otherwise the change
on in.editable has no effect on the ui.

Tab Cell Widget

Overview

The Cell Widget tab shows the configuration data mapping between the combo box and the cell.

Figure 6.11. The Cell Widget tab

Accessibility

The tab is only visible if a RComboBoxCellWidget is selected.

If it is not visible, go to: Window -> show View -> Widget Configuration and select the tab Cell Widget in the opened view
"Widget Configuration".

Features

Cell Binding Specify the data binding between the combo box and the table cell value, if needed. Per default (empty)
the whole selected entry is mapped to the table field.

Field: Specify the field (or a sub field/value) of the combo box entry, which is used for the data binding
between the combo box and the table cell. The returned value from the defined field will be set to the cell
value on user selection. Also backwards, the cell values from the table are compared with each defined
field value. The found entry will be displayed in the combo box. Note: The mapping values are cached
after the first usage.

User Interface

259

Tab Tree Data

Overview

On the Tree Data tab you configure what content to show in the Tree widget. You can configure the tree, based on the type
or information of the tree node by adding some filters.

Figure 6.12. The Tree Data tab

Accessibility

Window -> show View -> Widget Configuration -> Tree Data

Features

Source The type of the source must be Tree. Define in the IvyScript text field the path to your source.
The second combo box lets you configure the rendering behaviour of the tree. If you select
on render parent or on expand parent then the tree is lazy loaded and the tree widget fires
TreeLoad events to let the user populate the tree. The difference between the two modes is
the moment when the tree widget fires the TreeLoad event. If you set the mode to on render
parent then the tree widget fires the event as soon as the parent gets visible on the user interface.
If you select on expand parent then the event fires only if the user really expand the parent
node. If you configure the last mode (on expand parent) then the '+' sign is always rendered
for the parent node unless you set the mayHaveChildren flag of the tree node to false.

Table Tree Columns Field: Define the name of the field of your data source to map to the current column.
This is only allowed on a object-type based filter tab. The name entered in the filed
cell must map to a property of the value of the Tree node. The value of the field is
mapped to the variable value which you can use in the Ivy Script text field.

Value: Enter a IvyScript expression to configure what label should be displayed
in the tree row.

Tool tip: Enter a IvyScript expression to configure what tool tip text should be
displayed in the tree row.

Icon: Enter a IvyScript expression to configure which icon should be displayed in
the tree row.

User Interface

260

Style: Select a table cell style to use as style for the tree row if needed. To create
new table cell styles use the configuration editor.

Actions Show Icons: Activate this check box if you want to decorate your tree with icons.
The check box is only visible on the default filter tab.

Show Tool Tip: activate this check box if you want your tree to support tool tips
per row. The check box is only visible on the default filter tab.

Empty Widget Text: Enter a plain text that will be displayed if the data source is empty.

Tab TableTree Data

Overview

On the TableTree Data tab you configure what content to show in the TableTree widget. You can configure the TableTree,
based on the type or information of the tree node by adding some filters.

Figure 6.13. The Table Data tab

Accessibility

Window -> show View -> Widget Configuration -> TableTree Data

Features

Source The type of the source must be Tree. Define in the IvyScript text field the path to your source. The
second combo box lets you configure the rendering behaviour of the tree. If you select on render
parent or on expand parent then the tree is lazy loaded and the tree widget fires TreeLoad
events to let the user populate the tree. The difference between the two modes is the moment when
the TableTree widget fires the TreeLoad event. If you set the mode to on render parent then

User Interface

261

the TableTree widget fires the event as soon as the parent gets visible on the user interface. If you
select on expand parent then the event fires only if the user really expand the parent node. If you
configure the last mode (on expand parent) then the '+' sign is always rendered for the parent
node unless you set the mayHaveChildren flag of the tree node to false.

Table column: Columns Field: Define the name of the field of your data source to map to the current column.
This is only allowed on a object-type based filter tab. The name must map to a
property of the data source. The value of the field is mapped to the variable value
which you can use in the IvyScript text field.

Header: Enter a text here to be displayed as header of the column. Use IvyScript
macros if needed. example: <%=ivy.cms.co("/labels/header")%>

Value: Enter an IvyScript expression to configure what label should be displayed
in the tree row.

Tool Tip: Enter an IvyScript expression to configure what tool tip text should be
displayed in the tree row.

Icon: Enter an IvyScript expression to configure which icon should be displayed in
the tree row.

Width: Enter the number of pixels the column should have in width. Only works if
the configured autoResizeMode is set to AUTO_RESIZE_OFF

Style: Select a table cell style to use as style for the TableTree cell if required. To
create new table cell styles use the configuration editor.

Actions Add: Adds a new column configuration to your TableTree definition. The column
configuration will be shown as row in the TableTree columns configuration.

Remove: Removes the selected column configuration from your TableTree columns
configuration.

Up: Moves a TableTree columns configuration up in the table. This means that the
column moves one position to the left in the resulting TableTree.

Down: Moves a TableTree columns configuration down in the table. This means
that the column moves one position to the right in the resulting TableTree.

Show Header: Tick this check box if you want your TableTree to show a header
row. The check box is only visible on the default filter tab.

Autom. Header: Tick this check box if you want the system to label your headers.
The check box is only visible on the default filter tab.

Show Icons: Tick this check box if you want to decorate your TableTree with icons.
The check box is only visible on the default filter tab.

Show Tool Tip: Tick this check box if you want your TableTree to support tool tips
per row. The check box is only visible on the default filter tab.

Empty widget Text Enter a plain text that will be displayed if the data source is empty.

Tab Validation

Overview

The Validation tab shows the configuration for the client side validation for widgets the user can input data into.

User Interface

262

Figure 6.14. The Validation tab

Accessibility

Window -> show View -> Widget Configuration -> Validation

Features

Mandatory Activate this check box if the user must enter a value in the text field.

Type Select the type of validation that should be applied to the value entered by the user. See the Configuration
Editor for information about how to create your own input validation configurations.

IvyScript Editor Widget

Overview

The IvyScript editor widget allows you to enter IvyScript expressions, IvyScript snippets or IvyScript macros combined with
plain text. The background color of the IvyScript Widget signals what syntax is allowed. Is the background color yellow, then
you have to enter pure IvyScript. Depending on the context this IvyScript Widget is embedded, you have to enter a expression
or a whole IvyScript snippet.

If the background color of the IvyScript Widget is blue, then only the IvyScript macro syntax is accepted. Enter plain text
combined with IvyScript macros.

Figure 6.15. The IvyScript Editor Widget

Figure 6.16. The IvyScript Editor Widget as cell editor in a table

Features

• Code completion (Ctrl+Space): By pressing the '.' character or by pressing Ctrl+Space the code completer shows you
some code completion proposals depending on the already entered expression.

• Quick Assist (Ctrl+1): There are Quick Assists available to create or use content objects in the current Rich Dialog. Simply
press Ctrl+1 on a text. A newly created content object can directly be renamed in the IvyScript Editor. Just type a new
name and confirm with Enter, to abort the renaming press Esc.

User Interface

263

• Zoom: By pressing the F2 key, a new dialog opens with the zoomed IvyScript editor.

• Link to CMS (F3 or Ctrl)Press the F3 key on a ivy.cms.co(...) expression to jump to the corresponding CMS content object.
Alternatively press Ctrl and click on the expression.

• Smart Buttons: Use the smart buttons to insert predefined IvyScript expressions or IvyScript macros into your editor.

Ivy Outline View

Overview

The Axon.ivy Outline view shows outline information of the current Rich Dialog and offers some actions to configure it.
Furthermore, the Outline view helps you to compose Rich Dialogs by supporting Drag and Drop of elements from the outline
tree into the Rich Dialog editor to create data bindings and event mappings.

Figure 6.17. The Ivy Outline View

Accessibility

Window -> Show View -> Axon.ivy Outline

Features

Shows a tree containing two root
elements:

Data Class Fields Data Class fields are decorated with data binding
arrows. A green left arrow indicates a up binding
(data to UI), a blue right arrow indicates a down
binding (UI to data) and a left-right arrow indicates
a bidirectional binding. The decoration should also
work if the binding is complex (includes #, line
breaks, brackets,...).

Event Process Starts The Event Process Starts are decorated with blue right
arrows if they are mapped to a UI element.

Refresh The outline tree should refresh itself whenever a resource changes. (Data Class, Rich
Dialog, Event Process Starts)

DnD Drag tree items onto the visual editor to add mappings and bindings to your rich dialog.
See DnD for more information.

Context menu - Create Rich Dialog
Widgets

Creates a label and a data widget in the currently opened Rich Dialog for the selected
data class field. A Dialog pops up asking you to specify the details of the widgets you
want to create.

User Interface

264

Figure 6.18. Create Rich Dialog Widgets dialog

Menu "Refactor Label Text" Create CMS node: Creates a CMS node for
the text of the label. The name of the CMS
reference is configured by the string that is
currently defined as "Label Name".

Guess from CMS (CONTENT): Looks up in
the CMS if it can find a node with the content
string that is equal to the one set as "Label
Name".

Guess from CMS (URI): Looks up in the CMS
if it can find a node whose URI contains the
string that is equal to the one set as "Label
Name".

Dialog The details of the pair are shown in the dialog.
Not all details are configurable for all type
of "Label Widget - Data Widget" pairs. If
you select more than one element in the tree,
then only all the common configuration details
are enabled, the varying options cannot be
manipulated.

Property Node Name: Prefix for the name
of this "Label Widget - Data Widget" pair
in the panel data class, e.g. the label for the
pair eRMMessagenumber will be referenced by
eRMMessagenumberRLabel.

Label Name: The string that will be shown in
the GUI as label text.

User Interface

265

Label Style: The style of the label of the "Label
Widget - Data Widget" pair

Data Widget Type: The type of the data widget
e.g. RTextField, RComboBox, ...

Data Widget Style: The style of the data widget
used for the data widget chosen above.

Data Binding Direction: The direction of the
data binding

Data Binding UI Field: The field on the Rich
Dialog side of the data binding. e.g. text or
toolTipText for a "Label Widget - Data
Widget" pair that has a RTextField as its type of
the data widget.

Validation (only for RTextField) Mandatory:
If the user must enter a value in this field

Validation (only for RTextField) Type: The
name of the validation configuration reference.

At last, you have to place the widgets into your Rich Dialog using the Rich Dialog
editor. First you have to place the label and secondly you have to place the data widget,
e.g. the RTextField. Press the ESC key to cancel the action.

Data Binding View

Overview

The Data Binding view shows which process data fields are bound to which user interface widget properties. See Data Binding
section for a more detailed explanation of the concepts of data binding.

Figure 6.19. The Data Binding View

Note

The -> (down) data bindings will be executed at every Rich Dialog Start element (e.g. Rich Dialog Event start
or Rich Dialog Method start) except the Rich Dialog Start method element. The <- (up) data bindings will be
executed at every Rich Dialog Process End element.

Accessibility

Window -> show View -> Data Bindings

User Interface

266

Features

Columns: Rich Dialog Widget: Enter the path to the rich dialog widget's property that you want to use for your
binding.

Direction:

-> A down data binding. Maps the data from the user interface widget property to your process data
property.

<- An up data binding. Maps your process data property to the user interface widget property.

<-> A bi-directional data binding. Maps in both directions, from the widget property to your process
data at Rich Dialog process starts and back to the user interface at the end of them.

Rich Dialog Process Data: Enter the path to your Data Class attribute that you want to bind to the widget's
property. Use IvyScript functions to manipulate your data before the binding. If you do so, then you are
only allowed to bind the data in one direction (from process data to ui).

panel.myWidget.text "from/to " in.name
panel.myWidget.text.trim() "to (ui to data)" in.name
panel.myWidget.text "from (data to ui)" in.name.trim()

Refresh The table should refresh itself whenever a resource changes.

Cell Editing Use the F2 Key to enlarge the cell editor.

Use the Smart buttons, to get a faster access to your properties.

Use the auto completer to find your properties easier.

New Event Mapping Wizard

Overview

The New Event Mapping wizard lets you map a user interface events (e.g. a RButton) to Rich Dialog events.

With the wizard you can create several types of mappings:

GUI Events GUI (graphical user interface) events are triggered by the user, e.g. a mouse click leads
to an Action event on a RButton.

Display Events On the panel you have access to the LOAD and UNLOAD event of the Rich Dialog panel.

Embedded (inner) Rich Dialog
Events

If you embedded a inner Rich Dialog onto your current Rich Dialog then the Fired
Events of the embedded Rich Dialog are displayed to map to a process start of your
current (outer) Rich Dialog.

Make your choice from left to right. Start with the selection of the source widget from the tree widget on the left. The
configuration propositions on the right change when the selection changes on the left.

User Interface

267

Figure 6.20. The New Event Mapping Wizard

Accessibility

Rich Dialog editor -> context menu of a widget (e.g. a RButton) -> New Widget-Event to Process Mapping

Features

Widget Choose the source widget from whose events you want to map one.

Event Choose the event to map.

Event details Depending on the chosen widget and event, you have here the opportunity to configure the details of
the event.

Process Start Finally select the Rich Dialog process start that should be triggered after the chosen widget event was
fired.

Note

If the tree is empty, then you have to define some Rich Dialog Event starts
in your Rich Dialog logic first.

User Interface

268

Tip

It is also possible to define the event mappings by Drag and Drop. Open the Ivy Outline View to use it.

Event Mapping View

Overview

The Axon.ivy Event Mapping view shows which widget events are mapped to which Rich Dialog events.

Figure 6.21. The Event Mapping View

Accessibility

Window -> show View -> Event Mapping

Features

Focus Lists only the event mappings of the selected widget in the Rich Dialog editor.

Delete Removes the selected event mapping.

Filter Enter a string to filter the listed event mappings.

Widget Shows the source widget of the event that is mapped.

Event Shows the mapped event of the chosen widget.

Event details Shows the details of the mapped event if any.

Process Start Shows the Rich Dialog event that should be triggered after the widget event has been fired.

Edit an Event Mapping To edit a event mapping, just double click on the list entry. The Event Mapping Wizard will
open. Make sure that the Rich Dialog editor is the active editor and a widget is selected.

Drag and Drop in Axon.ivy Designer

Overview

The Axon.ivy Designer offers you to use Drag and Drop while creating your Rich Dialog panel. Drag and Drop can be used to:

• map Rich Dialog Event starts to your Rich Dialog widget events

• create data bindings from Data Class attributes to your Rich Dialog widgets

• associate CMS objects to widget properties

As Drag source you need the Ivy Outline view or the CMS view. As Drop target you need to point to a widget in an open
Rich Dialog editor.

User Interface

269

Figure 6.22. The DnD Axon.ivy Designer support

If you drag an element (e.g. a Data Class field in.myName) onto the Rich Dialog editor over a label widget, then after
some milliseconds a popup window appears and shows the possible mapping destinations. If you wait longer, more mapping
proposals will appear. Drop your in.myName over the proposal text in the popup and the data binding is created.

If you do not wait until the popup appears, and you drop the in.myName over the label widget, then a predefined proposal
will be used to create the data binding. The generation of the proposals in the popup is configurable as well as the auto-bind
if you do not wait until the popup appears. But this configuration is out of scope of this document.

Accessibility

Ivy Outline view -(drag to)-> Rich Dialog editor

CMS view / CMS editor -(drag to)-> Rich Dialog editor or a property in the Widget Configuration View

Rich Dialog User Context
The Rich Dialog User Context is a concept to store data for a Rich Dialog for the user currently logged in. E.g. it is possible
to store the last search string of a search dialog inside the context to show this string next time the user opens the panel again.
Therefore the Rich Dialog User Context only works when a user is logged-in. When no user is logged-in, the context is empty
and each interaction with the context has no effect.

Following Public API allows you
to set and get data from the Rich
Dialog User Context:

ivy.rd.context.setAttribute(String key, String value):
Associates the specified value with the specified key in the current Rich Dialog User
Context.

ivy.rd.context.getAttribute(String key) : String: Returns the
value of the specified key from the current Rich Dialog User Context.

Axon.ivy itself uses the Rich Dialog User Context to store the UI-State of certain widgets.

Restrictions

Do NOT use the Rich Dialog User Context for business relevant data. It is not guaranteed, that the data can be
restored in each situation. When the structure of the a Rich Dialog changes (e.g. the field name of a component
inside the Rich Dialog) to lookup of the context can fail, without any message.

Basically the context is designed for non business-critical information like UI-State.

User Interface

270

Configuration

The configuration of the Rich Dialog User Context will be done in the Rich Dialog Call element inside a Process and in the
Rich Dialog Start element inside a Rich Dialog logic.

Context Mode

The context mode allows to configure two modes, Standalone and Embedded:

Standalone

Use this mode, if for each call of a Rich Dialog the same context should be used. Therefore the context is defined by the Rich
Dialog (e.g. ch.foo.bar.MyRichDialog) and a optionally defined Context Name (e.g. MyContext).

If this configuration is made for a Rich Dialog Call element the configured Rich Dialog is used. If this configuration is made
for a Rich Dialog Start element, then the embedded Rich Dialog is used.

The context identification is: User, Rich Dialog and optional Context-Name

Embedded

Use this mode, if the Rich Dialog should use a different Context, when it is used from different locations. Therefore the
context is defined by the Rich Dialog, the context of parent Rich Dialog and the optional context name.

If this definition is made for a Rich Dialog Start element, the parent Rich Dialog of the embedded Rich Dialog is used as
parent Rich Dialog. If this configuration is made for a Rich Dialog Call element , the Rich Dialog which triggers the call of
this element is used as parent Rich Dialog.

The context identification is: User, Rich Dialog, parent Rich Dialog and optional Context Name

Context Name

With the use of context names, multiple and identifiable contexts may be defined. The context of the Rich Dialog then
additionally depends on the specified name. This configuration can be done for both modes, the context name is simply added
to the context identification.

Default Configuration

The Rich Dialog Call element is by default configured as Standalone. Therefore by default such a Rich Dialog will always
have the same Context.

User Interface

271

For embedded Rich Dialogs inside the Rich Dialog Start element the default context-mode is configured as Embedded.
Therefore all embedded Rich Dialogs are linked to the parent Rich Dialog context.

Rich Dialog User Context Examples

This section describes how to configure the context for a small application, like a News Reader.

Standalone Configuration

Each time the Rich Dialog NewsReader is called, the same context should be used. So the user will get the same context
each time when he opens the Rich Dialog NewsReader.

Technically one Rich Dialog, but functional multiple different usages

The Rich Dialog NewsReader is used e.g. for financial and local news. The context should be different. The user likes to
have one context for financial news and one for local news.

Configuration for Financial News:

Each time the Rich Dialog NewsReader is opened with the context-name FINANCE, this specific Rich Dialog User Context
will be used. There is no difference from which location (Rich Dialog Call element) the Rich Dialog is opened.

User Interface

272

Configuration for local News:

Each time the Rich Dialog NewsReader is opened with the context-name LOCAL, this specific Rich Dialog User Context
will be used. There is no difference from which location (Rich Dialog Call element) the Rich Dialog is opened.

Embedded Rich Dialog

The Rich Dialog NewsReader contains two embedded Rich Dialogs, the NewsList and the NewsConfiguration.
The embedded Rich Dialog NewsList has configured the context mode Embedded, because the context is depending on
it parent Rich Dialog Context, the NewsReader context. Therefore separate contexts will be used for financial and local
news, as defined in the NewsReader Rich Dialog. The embedded Rich Dialog NewsConfiguration contains the global
configuration of all news readers in the application. Therefore the context mode is Standalone. It should always use the
same context without dependency to the context of the NewsReader.

Configuration of NewsList

The context of the Rich Dialog NewsList is linked to the parent Rich Dialog NewsReader. Therefore, related to the
configuration of the parent Rich Dialog two contexts will be created. One for finance news and one for local news.

Configuration of NewsConfiguration

The context configuration of the Rich Dialog NewsConfiguration does not depend on the parent Rich Dialog. Therefore
only one context will be created. It will always use the same context regardless which context configuration NewsReader
does use.

User Interface

273

Rich Dialog UI State

The Rich Dialog UI State stores and restores a part of the UI state. The state is stored automatically when a windows closes.
At startup of a window, the last known state is restored automatically too.

The data is stored on the Rich Dialog User Context. Therefore, when no user is logged-in, this functionality is disabled.

Following public API allows to
force a store or restore of the UI
State:

ivy.rd.context.storeUiState(): Stores the UI state in the context of the
called Rich Dialog. Also the UI State of all embedded Rich Dialogs will be stored too.

ivy.rd.context.restoreUiState(): Restores the UI state in the context of
the called Rich Dialog. Also the UI State of all embedded Rich Dialogs will be restored
too.

Currently the following widgets are supported:

Supported widgets: Dialog / Window: The size and the location of a window / dialog on a screen.

RSplitPane: The relative position of the divider in the RSplitPane.

RTable: The column position, width and order.

Rich Dialog Widget Reference
This chapter explains the usage and configuration of all available Rich Dialog widgets. All widgets are sorted alphabetically,
regardless of their category.

ButtonGroup

Button groups are used to logically group exclusively selectable widgets (e.g. radio buttons or toggle buttons). In order for
a button group to effectively control the select state of it's guarded components it must be associated specifically with each
widget that it contains.

Button groups do not have a visual representation and must therefore be placed next to the panel rather than on the panel itself:

User Interface

274

To associate a button group with a widget, you first select the widget(s) inside the Visual Editor or inside the Beans View and
then set the button group object to be associated on the group attribute in the Properties View, as demonstrated above.

Symbol on Palette

Category Non Visual Widgets

Purpose Logically group a number of selectable items and ensure that
at most one is selected at a time.

Events -

Important Properties -

Table 6.13. ButtonGroup Summary

Chart widgets

The chart widgets can be used to display numeric data in a graphical way. Two types of charts are supported, pie charts for
small one-dimensional data sets and and bar charts for two-dimensional data. The charts widgets must be primarly used with
a Java API, there is only limited tool support in Axon.ivy, e.g. there is no Drag and Drop of events for the event mapping
or there is no widget configuration view.

To add a chart widget to a Rich Dialog use the Choose Bean entry from the palette in the Visual Editor. Then
choose either the ULCVPieChart or the ULCVBarChart and place it on the Rich dialog. Alternatively you can use the

User Interface

275

widgets by adding the corresponding code in the Java source of the Rich Dialog yourself. You can set most of the properties
in the properties view of the Rich Dialog perspective. But full support for the widgets is only given in code, either in Java by
enhancing the Rich Dialog source file manually or by accessing the widget with IvyScript.

Both charts can be used in 2D or 3D, for 3D charts use the appropriate constructors ULCVPieChart(boolean
is3DChart) and ULCVBarChart(boolean is3DChart) respectively. Both charts can optionally display a legend,
can use titles and sub titles and both offer adding a listener to be notified when the user clicks on the pie or bar.
Use addMouseListener(IChartMouseListener<EV extends ChartMouseEvent>) then you get either a
BarMouseEvent or a PieMouseEvent that you can query for more information about the click.

Pie charts are ideal to display small one-dimensional data sets with only some values. Use addPieSlice(PieSlice
slice) or setPieSlices(List<PieSlice> slices) to add data to the pie chart. In addition to the value it is
possible to set a solid color or a gradient and a title (only by constructor) for each slice.

For two-dimensional data, bar charts are better suited. You can add data by using addDataSeries(DataSeries
series) or setDataSeries(List<DataSeries> series). A data series is a list of values that belong together
and each value is represented as a bar in the same color/gradient. The other axis is defined by categories that group together
the values with the same index from different data series. In other words, the values of the data series represent the y-values
where as the categories are the x-values. For data series with lots of values, the bar chart widget supports paging. Switch
it on with setPagingEnabled(true). It's even possible to configure the number of values per page and whether the
coordinate system should be the same for all pages or whether it should be scaled.

Both widgets support the most important visual settings for charts such as background colors/gradients and transparency,
shadows, tool tips and setting the fonts and font sizes of the texts used in the charts (values, axis labels, titles).

RBooleanCellWidget

The RBooleanCellWidget is like a check box for table editing. Check boxes are used to let the user select an option.

The mapped table cell value shout be a boolean value, like true or false.

The check box will generate both an Action Event and a Value Changed event if it is selected or deselected.

You can provide your own selected and unselected icons (if you want to replace the standard check mark).

Symbol on Palette

Category Action / Selection widget

Purpose A check box to display and change a boolean cell value.

Events Action, Focus, Key

Important Properties text, icon, pressedIcon, rolloverIcon,
selectedIcon, toolTip

Table 6.14. RButtonCellWidget Summary

User Interface

276

RBorderLayoutPane

A border layout pane is a container which arranges its components using a Border Layout. Essentially, a border layout consists
of 5 areas: North, East, South and West which are arranged around the Center. The component in the center always consumes
as much of the available space as possible. The surrounding components are stretched accordingly.

You can specify the amount of vertical and horizontal spacing in between the 5 areas by setting the vGap and hGap properties,
respectively.

Tip

Not all areas of a border layout have to have a component assigned. If an area stays empty, it will not consume
any space (except for the center, which will also consume all available space if it does not have a component
assigned). It is common practice to use only the center in combination with one or two of the remaining sections.

Symbol on Palette

Category Container widget

Purpose A container which uses a Border Layout to arrange its
components.

Events Focus, Key

Important Properties hGap, vGap

Table 6.15. RBorderLayoutPane Summary

RBoxPane

A box pane is a container which arranges its components using a Box Layout. Essentially, working with a Box Layout is
similar to layouting with HTML tables. A box layout consists of n rows and mcolumns, where the height of each row and the
width of each column are determined by the tallest or widest component, respectively. If a widget does not fill the available
cell space, then it may be stretched and/or positioned inside the cell by defining its widget style properties accordingly.

You can specify the amount of vertical and horizontal spacing that is used between the rows and columns by setting the
verticalGap and horizontalGap properties, respectively.

Symbol on Palette

User Interface

277

Category Container widget

Purpose A container which uses a Box Layout to arrange its
components.

Events Focus, Key

Important Properties horizontalGap, verticalGap

Table 6.16. RBoxPane Summary

RBrowser

The browser widget can be used to show an embedded web browser.

Note

The web browser widget has no preview at design time in the Visual Editor. Instead the widget is rendered as a
label of the configured size, which shows a Embedded Web Browser : <no preview> message.

The browser widget will generate Web Browser - COMPLETED event, every time a new web page is loaded.

Tip

You can also use the web browser to display HTML pages or other content that you prepared yourself. The
content to display by the native browser can be set as a String on the content attribute.

Symbol on Palette

Category Information / Input widget

Purpose An embedded native browser which can be used to display
web pages.

Events Web Browser, Focus, Key

Important Properties Url, Content

Table 6.17. RBrowser Summary

RButton

Buttons are typically used to start an action or to generate an event. The button generates an Action Event if it is clicked.

Symbol on Palette

User Interface

278

Category Action widget

Purpose A button with text and/or icon.

Events Action, Focus, Key

Important Properties text, icon, pressedIcon, rolloverIcon,
selectedIcon, toolTip

Table 6.18. RButton Summary

RButtons in Frames

The action event of a RButton will be fired as soon as the user clicks the mouse on it. It will also be fired, if the RButton
owns the focus and the user hits ENTER or SPACE.

If the focus owner does not support the action event, then the default button of the frame will be fired.

Note

To set a RButton as the default button of a Rich Dialog you have to map the DISPLAY load event of the
panel and implement the following code snipped on the code tab of the event start process element:

panel.getRootPane().setDefaultButton(panel.okButton);

Badge mode for RButton

The RButton can be rendered like a smart phone like badge, a clickable icon paired with an overlay that displays a number.
Such badges are typically used to start dialogs, tools or processes that work on a list of entities, e.g. a badge could be used to
start a mail inbox dialog using the overlay to display the number of new unread messages.

Set the setShowBadge() method to change between normal button and badge mode and use the setBadgeValue()
method to set the overlay content.

RButtonCellWidget

Buttons are typically used to start an action or to generate an event. The button generates an Action Event if it is clicked. The
Button text, icon and tooltip are taken from the cell value.

To process the action event of the button, map the event to a Rich Dialog Process start in the Rich Dialogs panel logic. In the
code tab of the Event Start Process step enter the following code:

import ch.ivyteam.ivy.richdialog.widgets.components.customrenderers.RButtonCellWidget;
RButtonCellWidget button = event.getSource() as RButtonCellWidget;
int row = button.getRow();
int column = button.getColumn();

Symbol on Palette

Category Action widget

User Interface

279

Purpose A Button with a text to start an action. The cell value are
displayed as text.

Events Action, Focus, Key

Important Properties text, icon, pressedIcon, rolloverIcon,
selectedIcon, toolTip

Table 6.19. RButtonCellWidget Summary

RCardDisplay

Displays are placeholder widgets onto which Rich Dialogs can be loaded dynamically at runtime. A Card Display works like
a "stack of cards": only the last loaded Rich Dialog on top is visible. The previously loaded Rich Dialogs will become visible
again if the top component is unloaded (i.e. removed).

A card display generates a Selection Changed Event if a new Rich Dialog is loaded onto it.

Warning

In order to being able to address a display widget (when loading a Rich Dialog with a RD Process Element) you
must not forget to assign the display an unique id on the displayId property. If you fail to do so then the display
might not be found at runtime and Rich Dialogs may not be loaded correctly.

Symbol on Palette

Category Display widget

Purpose Placeholder for Rich Dialogs that are loaded dynamically at
runtime. Shows only last loaded component.

Events Selection Changed, Focus, Key

Important Properties displayId, toolTip

Table 6.20. RCardDisplay Summary

User Interface

280

RCardPane

A card pane is a container which arranges its components using a Card Layout. The components or containers that are managed
with a Card Layout are handled like a "stack of cards" where only the top component is visible. In order to identify the
contained elements (i.e. cards) must be provided with an unique name. By setting a name to the selectedName property
of a card pane the currently shown (i.e. top) component can be changed.

Any kind of widget or container can be a "card" on a card pane. Typically cards are containers, i.e. sub-panels, with an
individual layout.

Tip

You can use the following example code to cycle through the cards of a card pane at runtime:

List<String> names = panel.CardPane.getNames();
panel.myCardPane.selectedName = names.get(in.cardIndex);
in.cardIndex = (in.cardIndex + 1) % names.size();

Place a button next to your card pane container on the main panel and associate it's action with a process that
executes the above code. Each time when you click the button, the currently shown card will be changed.

Tip

When you work with a card pane in the Visual Editor then the editor area will only show the currently selected
card. To change this (i.e. make another card visible) simply select one of the sub components of the card pane
the Java Beans view.

Warning

It is absolutely crucial that each added card has an unique name assigned. Otherwise selection of the cards will
not work correctly.

Symbol on Palette

Category Container widget

Purpose A container which uses a Card Layout to arrange its
components (only component is visible).

Events Focus, Key

User Interface

281

Important Properties selectedName

Table 6.21. RCardPane Summary

RCheckBox

Check boxes are used to let the user select an option. The check box will generate both an Action Event and a Value Changed
event if it is selected or deselected.

You can provide your own selected and unselected icons (if you want to replace the standard check mark).

Symbol on Palette

Category Action / Selection widget

Purpose A check box with text that allows to select/deselect an option.

Events Action, Focus, Key, Value Changed

Important Properties text, toolTip, selected

Table 6.22. RCheckBox Summary

RCheckBoxMenuItem

Check box menu items are menu entries that represent on/off options. They can be used both inside RMenu and RPopupMenu
widgets. The standard check-box icon of a check box menu item can be replaced by setting a different Icon Uri and Selected
Icon Uri in the Widget Configuration Text/Icon Tab. Generally, check box menu items behave exactly the same as a
RCheckBox widgets.

Check box menu items generate both an Action event and a Value Changed event if they are selected or deselected.

Since check box menu items do not have a direct visual representation they should be placed directly on or below a menu
widget inside the Java Beans View. This view allows you to comfortably set up menu hierarchies using sub menus and menu
items:

User Interface

282

Symbol on Palette

Category Action widget

Purpose A selectable (on/off) option item in a menu.

Events Action, Value Changed, Key, Focus

Important Properties text, selected, toolTip

Table 6.23. RCheckBoxMenuItem Summary

RCloseableTabbedDisplay

The RCloseableTabbedDisplay is an extension of the RTabbedDisplay but with closable tabs. Please consult the
documentation of RTabbedDisplay for general information about tabbed displays.

In addition to the RTabbedDisplay the RCloseableTabbedDisplay displays a close icon for each tab.

A Tab Closing Request event is generated, when a user clicks the close icon of a tab. Processes that are mapped to this event
can cancel the closing of the tab by calling the cancel method on the event. If none of the mapped event processes call the
cancel method on the event, then the tab will be closed automatically at the end of the event process.

The following process and ivyScript snippets show how to cancel the closing somewhere in the event process of the Tab
Closing Request event:

The close icon of the tab can be changed. For that the properties tabCloseIconUri and tabInactiveCloseIconUri
are provided. Set a path to a CMS icon (for example /myIcons/closeIcon) to change the icons. If only the
tabCloseIconUri is specified, a gray version of it is used as the inactive close icon.

Symbol on Palette

Category Display widget

Purpose Extension of RTabbedDisplay to handle closing of tabs.

Events TabClosingRequest, SelectionChanged, Focus, Key

Important Properties displayId, tabPlacement, toolTip,
tabCloseIconUri, tabInactiveCloseIconUri

Table 6.24. RCloseableTabbedDisplay Summary

User Interface

283

RCollapsiblePane
A collapsible pane is a container for exactly one sub component (e.g. another container) which can be collapsed and expanded
programmatically by setting the property collapsed to true or false respectively. By default a collapsible pane collapses
vertically.

You can switch off the animated collapse by setting the animated property to false. In this case the embedded component
will simply disappear or appear at once.

When working with a collapsible pane, a few things have to be taken into consideration. If a collapsible pane collapses with all
it's content (i.e. effectively reduces it's size to 0), then extra space becomes available for all the other components on the panel.

This means that a collapsible pane can only be used within a container with a layout that in principle can handle the extra
space, e.g. RGridBagLayoutPane or RBorderLayoutPane.

Furthermore the contents of the collapsible pane (including the collapsible pane itself) should never have any layout property
set to request any extra space in the direction of the collapse (it's okay though to request any extra horizontal space, if the
collapsible pane is oriented vertically).

To achieve those requirements, the following two layout structures are recommended:

1. Use a surrounding container with a GridBag Layout.

Assuming a vertical collapsing pane place a component that is configured to consume any extra space above or below the
collapsible pane. This component will take up the extra space that becomes available when the panel collapses and will grow
into that direction. Therefore the collapsible panel will shrink either from bottom to top or from top to bottom, depending on
whether the "space consumer" is placed below or above, respectively. The example above simply employs a "vertical glue"
RFiller component to consume the extra space.

2. Use a surrounding container with a Border Layout.

Assuming a vertical collapsing pane place the collapsible pane either into the north or south area of the surrounding container.
If the panel collapses, the center area will receive and consume all extra space automatically and give it to the component
which is placed there (if any). Therefore the collapsible panel will shrink either from bottom to top or from top to bottom,
depending on whether is placed in the north or south area, respectively. Typically all other areas of the surrounding border
layout pane stay empty.

Symbol on Palette

User Interface

284

Category Container widget

Purpose A container which has the ability to collapse (i.e. hide) and
expand (i.e. show) a single embedded component.

Events Focus, Key

Important Properties collapsed, animated

Table 6.25. RCollapsiblePane Summary

RComboBox

A combo box allows the user to select one from a pull-down list of multiple options.

A combo box generates an Action Event if an option is selected.

You can configure both the appearance and the source of the data that a combo box should show on the Combo Box data
tab of the Widget Configuration View. You can specify text and/or icon as well as a tool tip for each entry depending on
the entry's value itself.

The data source can either be a List, a Record Set or an Enumeration. Depending on what is used, the properties
selectedListEntry, selectedRecord or selectedEnumValue will return the currently selected value.

Note

If you have large lists to display in a Combo Box, you should set the maximumRowCount property. This limits
the number of rows that are shown in the combo boxes drop-down list and instead offers a scroll bar to browse
the whole range of options.

Tip

The width of the combo box will be decided by the widest list entry of the provided data. But what, if you load
the data into the combo box lazily? Then the combo box will change it's appearance after loading the data, which
is often not desirable. You can prevent this by setting a prototypeDisplayValue, which is a string that
will only be used to calculate the width of the initially shown combo box - but without displaying the string itself.

Symbol on Palette

Category Data widget

Purpose A combo box allows to select exactly one from a list of
options.

Events Action, Focus, Key

Important Properties listData, recordsetData, enumClassName,
selectedIndex, selectedListEntry,
selectedRecord, selectedEnumValue,
maximumRowCount, prototypeDisplayValue,
font, toolTip

Table 6.26. RComboBox Summary

User Interface

285

RComboBoxCellWidget

A combo box cell widget is similar to a normal combo box like the RComboBox.

A combo box allows the user to select one item from a pull-down list of multiple items.

A combo box generates an Action Event if a item is selected.

You can configure both the appearance and the source of the data that a combo box should show on the Combo Box data
tab of the Widget Configuration View. You can specify text and/or icon as well as a tool tip for each entry depending on
the entry's value itself.

The data source can either be a List, a Record Set or a Enumeration. Depending on what is used, the properties
selectedListEntry, selectedRecord or selectedEnumValue will return the currently selected value.

Note

You could define the mapped field between combo box value and the table cell value. See the Cell Widget Tab
of the Widget Configuration View. for more details.

Note

If you have large lists to display in a Combo Box, you should set the maximumRowCount property. This limits
the number of rows that are shown in the combo box drop-down list and additionally offers a scroll bar to browse
the whole range of options.

Symbol on Palette

Category Data widget

Purpose A combo box allows to select exactly one from a list of
options.

Events Action, Focus, Key

Important Properties listData, recordsetData, enumClassName,
selectedIndex, selectedListEntry,
selectedRecord, selectedEnumValue,
maximumRowCount, prototypeDisplayValue,
font, toolTip

Table 6.27. RComboBoxCellWidget Summary

User Interface

286

RDatePicker

Date Pickers are used to query a date from an user. The date can either be entered directly into the Date Picker's date field
or be comfortably selected with the integrated pop-up calendar (will start at the currently set date). The date picker widget is
by default not initialized (empty) , use the valueAsDate property to set another date. Use the setDate() method with
the parameter null to reset the RDatePicker

The date picker widget generates an Action event if a new date has been selected.

Note

If you want to force a certain date format for a RDatePicker to show and accept for input, then you should
configure enable Validation in the Widget Configuration view of the respective Date Picker widget. See also
section below.

Validation

The Widget Configuration View shows an additional Validation Tab if a RDatePicker is selected.

On this tab you can make this widget mandatory. You do not need any additional format validation for user entered dates,
since the widget accepts only valid input. The widget uses the client language settings for date formatting.

Given that a valid format is ensured, you can access the value of a RDatePicker from attributes date and valueAsDate.

Attributes

The date field returns the selected/entered date value or null if the input was invalid (be careful with Axon.ivy's Null
Handling feature).

The attribute valueAsDate delivers the selected date or a Date.UNINITIALIZED_DATE value if the user input does
not represent a valid value.

The attribute firstDayOfWeek sets the day that starts the week. So that setting e.g. the value "3" (which means
Wednesdays, the default would be 1=Monday) then weeks under each other will be displayed starting with Wednesdays. (see
screenshot below)

The attribute flaggedDates enables you to highlight some dates. You should provide an array of dates that should be
highlighted (just like on the screenshot the 20 and 21.June).

The attribute daysOfTheWeek let you provide own titles for the days (see screenshot: "Mi"=Wednesday, "do"=Thursday,
etc.)

The attribute linkDate enables you to customise the label and the destination date of the link at bottom of the picker (on
the screenshot it is "3.Juni 2009", the default is today in the current language).

The attribute timeZone let you change the time zone the date picker should work with.

User Interface

287

Events

The date picker generates Action, Value Changed and as usual Focus Gained and Focus Lost events. The Action event occurs
whenever a user picks a date, or when he enters it into the text field manually (and hits an Enter key or leaves the field).
Meanwhile Value Changed occurs when a user leaves the widget and the value has changed.

Summary

Symbol on Palette

Category Input widget

Purpose Allows the user to specify a date with the help of a calendar.

Events Key, Focus, Action, ValueChanged

Important Properties valueAsDate, toolTip

Table 6.28. RDatePicker Summary

RFiller

Fillers are invisible glue components that consume space in a specific layout. The can either have a rigid fixed size (in which
case they simply keep a fixed distance between two components) or they can have a glue behaviour, in which case they
consume additional space, e.g. if a window gets resized. The latter is typically the intended behaviour if fillers are used inside
a GridBagLayout.

Tip

The real advantage of fillers only comes into play when they are used with style configurations. By using
differently styled fillers you can later simply change the styles to adjust the distances kept instead of having
to reconfigure each filler instance individually. However, when defining styles for fillers, keep in mind to use
logical names for your styles: if you name a style "50x50px" it may lead to unclear behavior if you later redefine
the filler style to occupy 40x30 pixels.

User Interface

288

Style Configuration

The style configuration of a filler define whether it is used as glue or as a rigid size block.

If the preferredIsExactSize style property of a filler is set to true, then the filler will never change it's preferred size,
no matter whether the layout changes due to resizing. In other words: the minimum and maximum size will be set to the
preferred size and all other properties will be ignored.

If the property is set to false, then the filler will behave as configured by the rest of the style properties, i.e. it will request to be
displayed with it's preferred size, but may change size to the specified minimum and maximum size, if the managing layout
manager (typically GridBagLayout) requests so, due to size changes of the surrounding container. In this way, the described
glue behaviour can be achieved. By default, the styles verticalGlue and horizontalGlue are already available for all fillers.

Symbol on Palette

Category Layout Helper widget

Purpose Fillers consume space between widgets in a configured way.

Events No events

Important Properties Do not set properties of a filler directly, use pre-configured
Styles instead.

Table 6.29. RFiller Summary

RFlowLayoutPane

A flow layout pane is the simplest container layout available. It uses a Flow Layout where all added components are arranged
in a single row. The row's contents are aligned either left, right or centered if extra space is available.

User Interface

289

The desired alignment of components can be set with the alignment property. The amount of horizontal spacing that is
used between the components can be specified by setting the hGap attribute. The amount of space that is added above and
below the components can be set with the vGap attribute.

Note

Usage of RFlowLayoutPane is generally not recommended. Use a flow layout only as a simple solution if
you need to arrange few (one or two) widgets of about equal height in a single row and if you know that you
have enough space available.

A common use is to put a flow layout into the north or south area of a RBorderLayoutPane to add, for example,
a single button or a label. The surrounding flow layout will then prevent the automatic horizontal stretching of
the component(s). But even here you should consider using a RGridBagLayoutPane with some horizontal glue
filler components instead, because you'll stay more flexible.

Symbol on Palette

Category Container Widget

Purpose A container which aligns it's added component left, centered
or right in a single row.

Events Focus, Key

Important Properties alignment, hGap, vGap

Table 6.30. RFlowLayout Summary

RGridBagLayout

A grid bag layout pane is the most powerful container in terms of layouting, it uses a GridBag Layout to arrange it's
components. In a grid bag layout components are arranged and aligned in a grid, but each component may span several grid
cells both horizontally and vertically. The sizes of grid cells are generally determined by the tallest and widest components
in their row or column, respectively. If a component has more space available than it's preferred size measures, then it may
be instructed to consume the additional horizontal or vertical space or to align itself inside the cell, either at north, northwest,
west, southwest, south, southeast, east, northeast or northwest position. By using nested containers that provide an own layout
but for the area they occupy the design of forms is very flexible.

Because components can be configured to consume extra available space, grid bag layout containers are largely insensitive
with respect to size changes of a window, for example. Components maintain their relative positions and may grow or shrink
according to the configuration. By using RFiller components, placeholders can be used that have the sole purpose of consuming
as much space as possible either horizontally or vertically or both.

Tip

When designing complex layouts with grid bag it is generally advisable to first sketch the screen that you want
to create with a pencil on a piece of paper before starting to design on screen. In a next step you should then
identify (perhaps with another color) the groups of components that might be layouted by a sub-container as
well as the major horizontal and vertical layout guide lines, which will usually indicate the row and column

User Interface

290

borders. Finally you should then identify the components that may grow and shrink if the container is resized
and possibly place filler components in strategic places, which may take up extra space.

Warning

The flexibility and power of grid bag layout may lead to some undefined results if configured improperly,
especially when using cell spanning. Make sure that you understand the possibilities of the layout if you
intend to create complexly layouted screens. You may for example consult GridBag Layout for a more detailed
explanation of the features of this layout.

The following layout style properties are available for all components that are contained inside a grid bag layout pane:

Property Name Description

fill Defines whether the component should consume extra space
that becomes available. Options are: horizontal, vertical, both
or none.

weightX Specifies the percentage of any extra available horizontal
space that the component will consume. 0 means none and 1
means all. This value should add up to 1 over all components
in a column. If the cumulated value is greater or smaller than 1
then the available space will be distributed to the components
relatively to the specified values.

weightY Same as weight X, but for the extra vertical space.

Anchor This setting has only an effect, if fill is not equal to both.
In the event of any extra available space the component will
then "stick" to the position defined here, e.g. to the top of the
cell if north is defined or in the lower left corner if southwest
is defined.

Table 6.31. Style Properties for Grid Bag Layout

Symbol on Palette

Category Container widget

Purpose A container with a very flexible and powerful row/column
based layout manager.

Events Focus, Key

Important Properties -

Component Layout Properties fill, weightX, weightY, anchor (see above)

Table 6.32. GridBagLayoutPane Summary

http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html#gridbag

User Interface

291

RGridLayoutPane

A grid layout pane arranges it's components in n rows and m columns in cells of equal size according by using a Grid Layout.
The size of the grid cells is determined by the tallest and the widest contained component. All components are stretched to
this size. Components can not span across multiple columns or rows.

The horizontal and vertical space between rows and columns can be configured by setting the hGap and vGap properties,
respectively. The number of desired columns and rows can be configured by setting the columns and rows properties,
respectively. The number of columns will increase automatically by one, if more than n x m components are added, but the
number of rows stays constant at the configured value.

Because all contained components are forced to have the same size, this pane is usually only employed in special situations,
e.g. for button panels, where it is desired for aesthetic reasons that all buttons have the same size, independent of the length's
of their texts.

Note

Arranging the components of a grid layout pane in the editor area of the Visual Editor can be tricky or even
impossible. You should always use the Java Beans View to line up the components in the correct sequence. The
grid layout pane will fill then the grid in a row-by-row manner, starting with the first component in the top row.

If you want to keep grid cells "empty" you should place RFiller widgets as placeholders into the sequence of
components. Inserting filler with a rigid size that is larger than those of all other components can also be used
to define a prototype cell size which will be used for all other cells.

Symbol on Palette

Category Container widget

Purpose A container which arranges it's components in n x m grid cells
of equal size.

Events Focus, Key

Important Properties rows, columns, hGap, vGap

Table 6.33. RGridLayout Summary

RHtmlPane

The html pane widget can be used to render a (small) HTML document on a label. Actually it is between RBrowser and
RLabel. RBrowser is capable to render more complicated HTML pages, and it allows navigation for a user just like RHtmlPane
per default. RLabel can also render HTML content if you surround content with the <HTML> tag. Meanwhile working with
RHtmlPane we recommend starting the text that the widget should display with an <HTML> tag.

User Interface

292

Warning

RHtmlPane enables navigation just like a browser through HTML links per default.

Tip

To disable hyperlink navigation use the property veto to true. This case you may add VetoListeners that can
decide if a Hyperlink navigation should be enabled. Per default there is no such VetoListener added, so that
Hyperlinks will have no effect.

Symbol on Palette

Category Label widget

Purpose A multi-line label which can display HTML texts with links.

Events Focus, Key, Hyperlink

Important Properties text, toolTip, veto

Table 6.34. RHtmlPane Summary

RHyperlink

A hyperlink can be used in place of a button. It takes less room and may look better in some places. An optional icon can also
be provided, the configuration possibilities are equal to those of a button.

Hyperlinks are rendered in a different color, once they have been activated. The hyperlink generates both an Actionevent and
a Clicked event if it is clicked.

Symbol on Palette

Category Action widget

Purpose A hyperlink that can be activated with a mouse click.

Events Action, Clicked, Focus, Key

Important Properties text, icon, focus, key, toolTip

Table 6.35. RHyperlink Summary

RHyperlinkCellWidget

Hyperlinks are typically used to start an action or to generate an event. The hyperlink generates an Action Event if it is clicked.
The hyperlink text, icon and tooltip are taken from the cell value.

User Interface

293

You will usually use RHyperlinkCellWidget if you need a clickable icon and / or text cell.

To process the action event of the hyperlink, map the event to a Rich Dialog Process start in the Rich Dialogs panel logic. In
the code tab of the Event Start Process step enter the following code:

import ch.ivyteam.ivy.richdialog.widgets.components.customrenderers.RHyperlinkCellWidget;
Object source = event.getSource();
if(source instanceof RHyperlinkCellWidget) {
 RHyperlinkCellWidget hyperlink = source as RHyperlinkCellWidget;
 ivy.log.debug("" + hyperlink.getRow() + " : " + hyperlink.getColumn());
}

Symbol on Palette

Category Action widget

Purpose A hyperlink with a text and / or icon to start an action. The
cell value is displayed as text.

Events Action, Focus, Key

Important Properties text, icon

Table 6.36. RHyperlinkCellWidget Summary

RLabel

Labels are used to write short texts on the UI, e.g. for labelling text fields or for writing status or title messages. A label can
have an optional icon to display, the relative position of text and icon can be configured, as well as the gap between them.

Labels are also capable of displaying simple HTML. Start the text that the label should display with an <html> tag. This way
you can for example use the tag to show parts of a text in a different color, or use to render text or in bold type.
Use
 to render multiple lines.

Labels can be assigned to another widget by using the labelFor property. If this property is set, the focus will be forwarded
to the assigned widget, if the label receives it.

Symbol on Palette

Category Label widget

Purpose A label which can display plain or simple HTML texts.

Events Focus, Key

Important Properties text, icon, toolTip, labelFor, font

Table 6.37. RLabel Summary

RList

User Interface

294

The list widget shows an arbitrary number of entries which are also available for (multi-) selection.

A list generates a List Selected Event if an entry is selected and an Action event if a list entry is double clicked.

You can configure both the appearance and the source of the data that a list should show on the List Data tab of the Widget
Configuration view. You can specify text and/or icon as well as a tool tip for each entry depending on the entry's value itself.

The data source can either be a List or a Record Set. Depending on what is used, the properties selectedListEntry;
selectedListEntries or selectedRecord; selectedRecords will return the currently selected value(s).
The selection mode (single selection, single interval selection or multiple selection) can be set with the selectionMode
property.

With the property autoSelectFirstEntry you can have the widget select the first data entry automatically (if data is
present). This has also the effect, that a call to clearSelection() will reset the selection to the first data entry (instead
of clearing). The property is set to false by default.

Note

Because lists tend to contain many items, it is recommended that you place RList widgets inside an RScrollPane
container, so that they become scrollable if the number of items becomes too large for the allocated view port
size.

Symbol on Palette

Category Data widget

Purpose A list shows an arbitrary number of items and allows the user
to select one or multiple entries from that list.

Events List Selected, Action, Focus, Key

Important Properties listData, recordsetData, selectedIndices,
selectedListEntry, selectedListEntries,
selectedRecord, selectedRecords,
autoSelectFirstEntry

Table 6.38. RList Summary

RListDisplay

Displays are placeholder widgets onto which Rich Dialogs can be loaded dynamically at runtime. A List Display shows the
loaded Rich Dialog panels as entries of a list.

A list display automatically shows a scroll bar if the number of loaded Rich Dialogs exceeds the available space.
You can configure and override this behavior by setting the properties horizontalScrollBarPolicy and

User Interface

295

verticalScrollBarPolicy to the respective values NEVER, AS_NEEDED or ALWAYS in the properties view (the
default is AS_NEEDED).

The RListDisplay does not support selection or offer selection events, but a Rich Dialog can be scrolled into
the visible area by either selecting it on the display with it's name (i.e. the name that is provided by a call to
IRichDialogPanel.getName()).

Warning

In order to being able to address a display widget (when loading a Rich Dialog with a Rich Dialog Process
element) you must not forget to assign the display an unique id on the displayId property. If you fail to do so
then the display might not be found at runtime and Rich Dialogs may not be loaded correctly.

Symbol on Palette

Category Display widget

Purpose Placeholder for Rich Dialogs that are loaded dynamically at
runtime. Shows loaded components in a scrollable list.

Events Focus, Key

Important Properties displayId, horizontalScrollBarPolicy,
verticalScrollBarPolicy, toolTip

Table 6.39. RListDisplay Summary

RLookupTextField

The RLookupTextField is a mixture between RTextField and RComboBox. The text field shows a list of suggestions while
typing, the suggestions are filtered according to the entered text, as the user continues typing. At any point of typing, the user
may choose to select one of the suggestions or stay with his input.

The selection of a suggested entry is performed if the user hits either Enter or Tab during typing. The user may use the up
and down Arrow Keys or the mouse to select a specific entry from the suggestion list.

Events

As well as RTextField, RLookupTextField also offers events like Value Changed Event, Key Event and Selection Changed
events.

Key Event is sent when ever a key is typed, the Value Changed Event is only sent when the user leaves the text field and
the value has changed.

The Value Changed Event is transmitted synchronously and the Key Event is transmitted asynchronously.

Data

Data for an RLookupTextField is configured very similar to a RComboBox.You can configure both the appearance and the
source of the suggestions that the text field shows on the Data tab of the Widget Configuration view. You can specify the
display strings of the suggestions for each entry depending on the entry's value itself.

User Interface

296

The data source can either be a List or a Record Set. Depending on what is used, the properties getSelectedListEntry()
or getSelectedRecord() will return the currently selected value. If no value from the suggestion list has been chosen,
then null will be returned by those methods.

Use getText() to get the text that is actually shown in the text field, which may be different from the associated selection's
model entry (e.g. if the user has entered a text that does not match an entry, or if the entry's display string is different from
the entries value).

Special Properties

With the property lazyLookupIdleTime you can set an idle time in milliseconds. The text field will wait for a pause in
typing that is longer than this idle time, before the entered text is sent to the server (thus filtering the displayed suggestions).
Setting an higher idle time is recommended, if your users type very fast and feel annoyed by the fact, that the outgoing requests
to filter large suggestion lists block their input.

If the property forceSelection is set to true then only selections from the suggestion list are accepted. The text field
is then used merely to filter the proposals. If the entered text does not match any of the suggestions it will be marked as
invalid. When leaving the text field, then invalid text will be discarded and the text will be reset to the last selected valid
value (which is possibly empty).

If the property forceSelection is set to false, then user input which is not among the proposed entries will
also be accepted. In this case, it may occur that querying the selected value with getSelectedRecord() or
getSelectedEntry() results to null, because the user input does not match any of the proposals. In this case you
should use getText() to access the text that was entered by the user.

If autoSelectFirstEntry is set to true, then the text of the RLookupTextField will be initialized with the first entry
of the data list.

Symbol on Palette

Category Input widget

Purpose An RTextField that offers a lookup function to help text
selection from a list. As you begin to type your text a selection
list will appear. This list shows prefix matches with the text
you typed in.

Events Key, Focus, Value Changed

Important Properties listData, recordsetData, selectedListEntry,
selectedRecord, valueAsString,
lazyLookupIdleTime autoSelectFirstEntry,
forceSelection, autoSelectFirstEntry

Table 6.40. RLookupTextField Summary

RMenu

A menu is a container for RMenuItem (and similar) widgets. It can be nested within other menus, including RPopupMenu.
Menus can also be added to a RMenuBar.

Menu widgets do not provide any events and they don't have any special properties worth mentioning, use the Widget
Configuration Text/Icon Tab to set text and optional icon of a menu.

Since menu widgets do not have a visual representation on the panel they should be placed directly inside the widget tree of
the Java Beans view. This view allows you to comfortably set up menu hierarchies using sub menus and menu items:

User Interface

297

Symbol on Palette

Category Container widget

Purpose Provide a container for menu items and thereby define
contents of a menu.

Events -

Important Properties -

Table 6.41. RMenu Summary

RMenuBar

Menu bars are containers for RMenu widgets. A menu bar is constantly visible (as opposed to a RPopupMenu which only
appears on demand) and shows the available top level menus with their name. If a menu is clicked, then it unfolds and displays
it's entries which are then available for selection. Menu bars are typically placed at the top of a screen, but they don't have to.

Menu bars do not support any events and they don't have any special properties worth mentioning.

Note

Although menu bars do have a visual representation on the edited panel, the added menus should not be dropped
onto the menu bar component inside the visual editor area. Instead they should be inserted below the menu's
representation in the Java Beans view, where the hierarchical structure of the menu components becomes
apparent.

Symbol on Palette

Category Container widget

Purpose A container for menu objects.

Events -

User Interface

298

Important Properties -

Table 6.42. RMenuBar Summary

RMenuItem

Menu items are the standard entries for RMenu and RPopupMenu widgets. They can have a text and/or icon. In fact, a menu
item behaves exactly the same as a RButton in all aspects of its use.

Menu items generate an Action event if they are selected.

Since menu items do not have a direct visual representation they should be placed directly on or below a menu widget inside
the Java Beans view. This view allows you to comfortably set up menu hierarchies using sub menus and menu items:

Note

In the current version of Axon.ivy you are not yet able to map the action for menu entries to process starts with
drag and drop, as with button actions for example.

To map menu entries you have to open the New Event Mapping dialog from the context menu of any
RMenuItem widget (or a subclass thereof) inside the Rich Dialog editor.

Symbol on Palette

Category Action widget

Purpose A clickable item of a menu.

Events Action, Key, Focus

Important Properties text, icon

Table 6.43. RMenuItem Summary

User Interface

299

RMenuSeparator

Menu separators are used to visually separate menu items into groups. Simply place them between any menu items of a menu
container in the Java Beans view.

Menu separators do not generate any events.

Since menu separators do not have a direct visual representation they should be placed directly on or below a menu widget
inside the Java Beans view. This view allows you to comfortably set up menu hierarchies using sub menus and menu items:

Symbol on Palette

Category Layout Helper widget

Purpose Visually separate menu items into groups.

Events -

Important Properties -

Table 6.44. RMenuSeparator Summary

RPasswordField

Password fields are used to query passwords from the user. The entered input is not rendered in clear text but as * characters.
The text field generates a Value Changed event and a Key event every time a key is typed and an Action event if the return/
enter key is pressed.

The Value Changed event is transmitted synchronously and the Key event is transmitted asynchronously. Since the
synchronous event handling may lead to a blocking of the UI if the user types too fast, it is generally recommended to map
the asynchronous Key event instead (will keep the UI responsive).

Symbol on Palette

Category Input widget

Purpose A field where the user can enter a password.

User Interface

300

Events Key, Focus, Action, Value Changed

Important Properties text, echoChar, toolTip, font

Table 6.45. RPasswordField Summary

RPopupMenu

A popup menu is a container for RMenuItem (and similar) widgets. It can be associated with a component or a container and
will normally appear when the user clicks the right mouse button on that component.

RPopupMenu widgets do not provide any events and they don't have any special properties worth mentioning.

Since popup menus do not have a visual representation on the panel they must be placed next to the panel rather than on
the panel itself:

To associate a popup menu with a component, you first select the component inside the Visual Editor or inside the Java
Beans view and then set the menu object to be associated on the componentPopupMenu attribute in the Properties view,
as demonstrated above.

Note

The popup menu can also be inherited from a parent component, i.e. you can associate a popup menu with a
top level container (e.g. the panel itself) and can then reuse it on the inner components. If you consult the Java
Beans view, you can easily identify the components that are able to inherit the popup-menu of a container.

By inheriting the popup menu of a parent component you don't have associate a popup menu with each sub
component again, if you should decide to use another menu on the parent. Inheritance is supported over multiple
levels, as long as the direct parent component also inherits the menu.

Symbol on Palette

User Interface

301

Category Container widget

Purpose Define the contents of a context / popup menu on a
component.

Events -

Important Properties -

Table 6.46. RPopupMenu Summary

RProgressBar

A progress bar can be used to inform the user about the amount of completed work or to show a percentage graphically.
Progress bars can either have a horizontal or vertical orientation, which can be specified with the orientation property.
Progress bars are pure information widgets, i.e. the displayed information can not be altered directly by the user in any way. .

The appearance and behavior of a progress bar can be configured: The minimum and maximum value can be set and an
optional label string can be defined which can be rendered over the progress bar.

Tip

When you update progress (value property) the GUI on the client side will only be updated when you leave the
process you are currently in. So that you have to use a timer with callback method to show a changing progress
bar.

Symbol on Palette

Category Information widget

Purpose Show a percentage value graphically.

Events Focus, Key

Important Properties value, maximum, minimum, orientation, string,
stringPainted, toolTip

Table 6.47. RProgressBar Summary

RRadioButton

Radio buttons are used give the user the possibility to select exactly one from a number of options. The radio button will
generate both an Action event and a Value Changed event if it is selected or deselected.

You can provide your own selected and unselected icons (if you want to replace the standard radio mark).

Note

Radio buttons should always be used in conjunction with a ButtonGroup to ensure that only one can be selected
at a given time.

Symbol on Palette

Category Action / Selection widget

User Interface

302

Purpose A radio button that allows to select exactly one from multiple
options.

Events Action, Focus, Key, Value Changed

Important Properties text, toolTip, selected, group

Table 6.48. RRadioButton Summary

RRadioButtonMenuItem

Radio button menu items are typically used in groups of at least two and represent a number of exclusively selectable
options. They can be used both inside RMenu and RPopupMenu widgets. The standard radio button icon of a
RRadioButtonMenuItem can be replaced by setting a different Icon Uri and Selected Icon Uri in the Widget
Configuration Text/Icon Tab. Generally, radio button menu items behave exactly the same as a RRadioButton widgets.

Radio button menu items generate both an Action event and a Value Changed event if they are selected or deselected.

Since radio button menu items do not have a direct visual representation they should be placed directly on or below a menu
widget inside the Java Beans view. This view allows you to comfortably set up menu hierarchies using sub menus and menu
items:

Note

Radio button menu items should always be used in conjunction with a ButtonGroup to ensure that only one can
be selected at a given time.

Symbol on Palette

Category Action widget

Purpose One of a number of exclusively selectable items in a menu.

Events Action, Value Changed, Key, Focus

Important Properties text, selected, toolTip, group

Table 6.49. RRadioButtonMenuItem Summary

User Interface

303

RScrollBar

A standalone scroll bar can be used to let the user adjust a property in a continuous way; e.g. as an alternative to a RSlider
widget which only offers to select a range value in discrete steps. Scroll bars can either have a horizontal or vertical orientation,
which can be specified with the orientation property.

A scrollbar produces continuously Adjustment events if the knob is dragged with the mouse.

The scrollbar's position value is a value between 0 and 1, indicating the percentage at which the bar's knob is positioned.

Symbol on Palette

Category Input widget

Purpose Select a value between 0 and 1 in a continuous way, by
positioning the scrollbar knob with the mouse.

Events Adjustment, Focus, Key

Important Properties position, orientation, unitIncrement,
blockIncrement, toolTip

Table 6.50. RScrollBar Summary

RScrollPane

A scroll pane provides a "viewport" (i.e. a window) that can be moved about a single sub component which is typically larger
than the area taken up by the scroll pane container. Different scroll bar policies both for vertical and horizontal scrolling
can be configured by setting the properties verticalScrollBarPolicy and/or horizontalScrollBarPolicy
to AS_NEEDED, ALWAYS or NEVER respectively. Scrolling with the mouse wheel can be enabled or disabled by setting the
property wheelScrollingEnabled.

Symbol on Palette

Category Container widget

Purpose A for a single sub-component providing horizontal and
vertical scrollbars to move the viewport about the contents of
the subcomponent.

Events Focus, Key

Important Properties verticalScrollBarPolicy,
horizontalScrollBarPolicy,
wheelScrollingEnabled

Table 6.51. RScrollPane Summary

User Interface

304

RSlider

A slider widget can be used to let the user adjust a property in a discrete or continuous way. Sliders can either have a horizontal
or vertical orientation, which can be specified with the orientation property. With the inverted property the orientation
of the range of values can be selected.

The appearance and behavior of a slider can be further configured: The maximum and minimum range value can be set, as
well as the minor and major tick spacing. You can define whether the ticks should be painted, whether the track should be
painted and whether the knob should snap to the tick marks or not.

A slider produces Value Changed events if the knob is dragged with the mouse.

Symbol on Palette

Category Input widget

Purpose Select an numerical value between a defined minimum and
maximum, by positioning the slider knob with the mouse.

Events Value Changed, Focus, Key

Important Properties value, minimum, maximum, orientation,
inverted, minorTickSpacing,
majorTickSpacing paintTicks, snapToTicks,
toolTip

Table 6.52. RSlider Summary

RSplitPane

A split pane divides the available space into two areas, either left and right or top and bottom, into each of which exactly one
component or sub-container may be placed.

In between the two areas, a divider component allows to distribute the available space with the mouse. Use the orientation
property to set the split pane's orientation to either horizontal split or vertical split. The dividerLocation attribute may
be used to initially place the divider.

User Interface

305

The divider can either be continuously dragged with the mouse or any of it's two arrow icons can be clicked, in which case
it will move completely to the indicated side, hence closing the component on this side entirely (see examples above). If you
set the oneTouchExpandable property to true then the divider may be moved to the opposite side with a single mouse
click (this behaviour is off by default).

Normally the two components are only re-layouted when the user let's the divider go. If you want a continuous re-layouting
during the drag then you must set the continuousLayout property to true.

Note

Initially the split pane container shows with two "dummy" buttons in it's left and right (or upper and lower) half.
Those buttons are not really contained on the panel and only shown as visual help. Simply drop a component
on top of the respective button to replace it.

Warning

Unfortunately the initial location of the split pane divider can only be set in absolute pixels (and not relative in
%). Since you may not always know the size that your split pane will receive initially it is recommended to set
a preferred or minimum size of the split pane and then position the slider with respect to the width (or height)
of the configured size. This is not a perfect solution but for many cases an acceptable workaround.

Tip

Resizing split pane does not work as you expect?

The dividerLocation seems to change in its own way. Take a look at the setResizeWeight(double)
method to control distribution of extra space.

Symbol on Palette

Category Container widget

Purpose A two-area container with a movable divider to redistribute
space.

Events Focus, Key

Important Properties orientation, dividerLocation, resizeWeight,
oneTouchExpandable, continuousLayout,
dividerSize

Table 6.53. RSplitPane Summary

RTabbedDisplay

Displays are placeholder widgets onto which Rich Dialogs can be loaded dynamically at runtime. A RTabbedDisplay
shows the loaded Rich Dialog panels as tabs.

A tabbed display generates a Selection Changed event if one of its tabs (i.e. loaded Rich Dialogs panels) is selected. This also
happens if a new Rich Dialog is loaded onto the display, because it will become the selected tab.

User Interface

306

Warning

In order to being able to address a display widget (when loading a Rich Dialog with a Rich Dialog Process
element) you must not forget to assign the display an unique id on the displayId property. If you fail to do
so then the display might not be found at runtime and Rich Dialogs may not be loaded correctly.

Symbol on Palette

Category Display widget

Purpose Placeholder for Rich Dialogs that are loaded dynamically at
runtime. Shows loaded components as tabs.

Events Selection Changed, Focus, Key

Important Properties displayId, tabPlacement, toolTip

Table 6.54. RTabbedDisplay Summary

RTabbedPane

A tabbed pane is a container which arranges its components behind each other (similar to RCardPane) but making each one
directly accessible by providing tabs. By clicking on a tab the associated component is brought to front. The location of the
tabs can be configured as top, bottom, left and right with the property tabPlacement. The currently selected tab can be set
with the selectedIndex attribute. The added components are associated with an index starting at 0.

Any kind of widget or container can be a "tab" on a tab pane. Typically tabs are containers, i.e. sub-panels, with an individual
layout.

Each tabbed component can have it's tab labelled be given a tool tip by setting the properties title and toolTipText
inside the containment attribute, respectively.

Note

As you can see in it is also possible to set an icon for each tab. However this is currently not well supported by
Axon.ivy. To do so, you should copy the image that you want to use (png, gif or jpg format) to a source folder
of the project and then link it with the inline editor of the Properties View by selecting it. Do never link from
the file system as this will not work in a productive environment.

Tip

When you work with a tabbed pane in the Visual Editor then the editor area will only show the currently selected
tab. To change this (i.e. make another tab visible) simply select one of the sub components of the tabbed pane
in the Java Beans view.

The indices of the tabbed components correspond to the order in which they are displayed in the Java Beans
view, i.e. the first component has index 0 and the last one has index (number of tabs) -1.

Symbol on Palette

User Interface

307

Category Container widget

Purpose A container which arranges it's components behind each
other, making them accessible with a tab.

Events Focus, Key

Important Properties selectedIndex, tabPlacement

Table 6.55. RTabbedPane Summary

RTable

Table widgets are used to show tabular data.

A table generates a List Selected Event if a row is selected, an Action Event if a row is double clicked and a Value Changed
Event if one of the RTable cell values has changed.

You can configure both the appearance and source of the data that a table should show on the Table Data tab of the Widget
Configuration view. There you can specify a style configuration for each column cell as well as icon, text and tool tip for
each column, based on the value of the cell or the whole row data. The widget config also allows you to specify the table
columns as editable and/or sortable. The column entries are sorted according to the value they represent if you double click
on the header of a column.

Note

The column value are sorted according to the value they represent. If the column is configured to show a
Recordset field or a List entry, then the column is sorted against the original value from the Recordset or the List.
E.g. if you transform the original data to a string in the Widget Configuration then the column sorting ignores
the transformation for the sorting. If you do not specify any source for a column, then the column will be sorted
according to the string representation of the cell value.

The Widget Configuration lets you define each column to be editable or not, by ivyScript. The edited values are stored in the
data model directly (List or Recordset). There is no event at the moment, that signals a change in the RTable data.

The appearance of the table widget itself can be further configured by setting the properties showGrid,
showHorizontalLines and showVerticalLines.

The data source for a table can either be a List of Lists with equal length or a Recordset. Depending on what is used, the
properties selectedListEntry; selectedListEntries or selectedRecord; selectedRecords will
return the currently selected list or record. The selection mode (single selection, single interval selection or multiple selection)
can be set with the selectionMode property.

With the property autoSelectFirstEntry you can have the widget select the first data entry automatically (if data is
present). This has also the effect, that a call to clearSelection() will reset the selection to the first data entry (instead
of clearing). The property is set to false by default.

Note

Because tables tend to contain many items, it is recommended that you place table widgets inside an RScrollPane
container, so that they become scrollable if the number of items becomes too large for the allocated view port
size.

The headers, if any, are only displayed if the RTable resides inside a RScrollPane.

User Interface

308

Tip

To process the Value Changed event, map the event to a Event Process Start element in your Rich Dialog logic.
Enter the following script into the code tab of the Event Process start element:

import ch.ivyteam.ivy.richdialog.widgets.components.RTableValueChangedEvent;
RTableValueChangedEvent changedEvent = event as RTableValueChangedEvent;
int row = changedEvent.getFirstRow();
int column = changedEvent.getColumn();

Symbol on Palette

Category Data widget

Purpose A table can show a (large) amount of tabular data and allows
the user to select one or multiple rows from the spread sheet.

Events List Selected, Action, Focus, Key, Value Changed

Important Properties listData, recordsetData, selectedListEntry,
selectedListEntries, selectedRecord,
selectedRecords, selectionMode,
autoSelectFirstEntry

Table 6.56. RTable Summary

RTableTree

The RTableTree widget is a combination of the RTable and RTree widgets. It therefore offers the combined amount of
events and configuration possibilities. Please consult the documentation of the mentioned widgets for a detailed explanation
of the respective aspects.

Use the Widget Configuration TableTree data tab to configure the table tree widget style and data settings.

With the property autoSelectFirstEntry you can have the widget select the first data entry automatically (if data is
present). This has also the effect, that a call to clearSelection() will reset the selection to the first data entry (instead
of clearing). The property is set to false by default.

Note

Because table trees tend to contain many items, it is recommended that you place tree widgets inside an
RScrollPane container, so that they become scrollable if the number of items becomes too large for the allocated
view port size.

The headers, if any, are only displayed if the RTableTree resides inside a RScrollPane.

Symbol on Palette

User Interface

309

Category Data widget

Purpose A table displays hierarchical tree data in a tabular fashion.
Nodes/rows can be selected, expanded and collapsed.

Events Tree Selection, Tree Load (configurable), Tree Expansion,
List Selected, Action, Focus, Key

Important Properties treeData, listData, recordsetData,
selectedTreeNode, selectedTreeNodes,
selectedListEntry, selectedListEntries,
selectedRecord, selectedRecords,
selectionMode, autoSelectFirstEntry,
rootVisible

Table 6.57. RTableTree Summary

RTaskPane

A RTaskPane is essentially the same as a RCollapsiblePane, with the difference that it provides a title bar which consists
of a title text, an optional icon and a collapse/expand button. Any kind of widget or container can be the content of a task
pane on a task pane container.

Task panes are best used inside a RTaskPaneContainer, which is a parent container designed specifically to show task panes
in a side bar below each other. The task pane container takes care of taking up the extra space if a pane is collapsed and
shifts the other panes accordingly. Task pane container can also be configured to ensure that at most a single task pane is
open at one time.

If you want to use a task pane outside a task pane container then you have to take care of correct re-layouting yourself
(i.e. provide other components that take up extra available space in case of collapsing). Consult the documentation of
RCollapsiblePane for more information on this matter.

Use the Widget Configuration text/icon tab to set title and icon of a task pane. The state of a task pane (i.e. collapsed or
expanded) can be defined by setting the expanded attribute.

Tip

To initially add contents (e.g. an empty panel) to a task pane you simply drop the component either on the task
pane's title bar (in the Visual Editor area) or onto the task pane node inside the Java Beans view. The task pane
will then expand and show the added contents so that you can continue to edit it.

Symbol on Palette

Category Container widget

Purpose A collapsible container with a title bar intended to be used
inside a RTaskPaneContainer.

Events Focus, Key

Important Properties text, icon, expanded

Table 6.58. RTaskPane Summary

User Interface

310

RTaskPaneContainer

A task pane container is a container for RTaskPane components only. The added task panes are arranged vertically below each
other. The task pane container itself has only limited configuration possibilities: if you set singleTaskPaneOpen to true,
then only one task pane can be opened at a time (i.e. the previously opened task pane will be closed before opening a new one).

Any kind of widget or container can be the content of a task pane on a task pane container. See RTaskPane to learn how to
configure a single task pane.

The task pane container will show the contained task panes in exactly the state as they were configured in the Rich Dialog
editor. I.e. all closed panes will be initially shown in collapsed state and all open panes will be initially shown in expanded state.

Tip

To add contents (e.g. an empty panel) to a previously added task pane you simply drop the component either on
the task pane's title bar (in the Visual Editor area) or onto the task pane node inside the Java Beans view. The
task pane will then expand and show the added contents so that you can continue to edit it. If you want to close
an RTaskPane then you have to set it's expanded property to false.

Symbol on Palette

Category Container widget

Purpose A container for RTaskPane widgets.

Events Focus, Key

Important Properties singleTaskPaneOpen

Table 6.59. RTaskPaneContainer Summary

RTaskPaneDisplay

Displays are placeholder widgets onto which Rich Dialogs can be loaded dynamically at runtime. A Task Pane
Display shows the loaded Rich Dialogs as individual Task Panes on a Task Pane Container. By setting the property
singleTaskPaneOpen to true you can configure that at most one task pane should be open (i.e. the previously open task
pane will be closed if another task pane is selected or opened).

A task pane display does not generate any non-standard events.

User Interface

311

Warning

In order to being able to address a display widget (when loading a Rich Dialog with a Rich Dialog Process
element) you must not forget to assign the display an unique id on the displayId property. If you fail to do
so then the display might not be found at runtime and Rich Dialogs may not be loaded correctly.

Symbol on Palette

Category Display widget

Purpose Placeholder for Rich Dialogs that are loaded dynamically at
runtime. Shows loaded components as task panes.

Events Focus, Key

Important Properties displayId, singleTaskPaneOpen, toolTip

Table 6.60. RTaskPaneDisplay Summary

RTextArea

Text areas are used to allow the user to enter multi-line texts. The text area generates a Value Changed event and a Key event
every time a key is typed.

The Value Changed event is transmitted synchronously and the Key event is transmitted asynchronously. Since the
synchronous event handling may lead to a blocking of the UI if the user types too fast, it is generally recommended to map
the asynchronous Key event instead (will keep the UI responsive).

Use the attributes lineWrap and wrapStyleWord to enable/disable line wrapping and to enable/disable whole word
wrapping, respectively. Obviously the setting second attribute has only an effect, if line wrapping is enabled.

Note

Although the text area allows for multi-line input, it will not automatically show scroll bars if the edited
text grows out of the available space, either horizontally or vertically. Placing the text area widget inside a
RScrollPane container resolves this issue. The scroll pane container allows you to configure individual policies
for the horizontal and vertical scroll bars (show always, show if needed, never show).

Note

To append a complete line (including line break) to the end of a text area's text, you can use the method
appendLine(String).

Validation

The Widget Configuration view shows an additional Validation Tab if a text area is selected.

By selecting a specific validation configuration you can define the format of the input.

You can edit existing configurations or add new ones in the Widget Input Validation subtree of the Configuration Editor. You
can specify Number, Date, Percent, String/Regular Expression based validations.

Tip

Most of the existing validation configurations do not support multiple lines input. Thus they will not suite ideally
for a text area. Therefore, it is recommended to create regular expression based validation configurations specific
to the text area. In order to support multiple lines, the existence of newline characters (\r\n) must be considered.

User Interface

312

Symbol on Palette

Category Input widget

Purpose An area where the user can enter a multi-line text.

Events Key, Focus, Value Changed

Important Properties text, lineWrap, wrapStyleWord, caretPosition,
toolTip, font

Table 6.61. RTextArea Summary

RTextField

Text fields are used to get (single line) input from the user. The text field generates a Value Changed event and a Key event
every time a key is typed.

The Value Changed event is transmitted synchronously and the Key event is transmitted asynchronously. Since the
synchronous event handling may lead to a blocking of the UI if the user types too fast, it is generally recommended to map
the asynchronous Key event instead (will keep the UI responsive).

Tip

The text that the user enters in a text field can be restricted and/or validated. If it does not match the required
format, then an (automatic) visual feedback can be given to the user. Read the validation section below to learn
how this can be done.

User Interface

313

Validation

The Widget Configuration view shows an additional Validation Tab if a text field is selected.

By selecting a specific validation configuration you can define the format of the input.

You can edit existing configurations or add new ones in the Widget Input Validation subtree of the Configuration Editor. You
can specify Number, Date, Percent, String/Regular Expression based validations.

Given that a valid format is ensured, you can access the value of a text field from the specialized attributes valueAsNumber,
valueAsDate and valueAsString.

Note that the return value is a e.g. Date.INVALID if the user input does not represent a valid value.

Warning

Be aware that the accessing of a text field's value as number or as date will fail with an exception at runtime if
the input entered by the user does not match the requested format. Therefore you should always enforce valid
input with a proper Validation Configuration if you intend to access an entered date and number directly with
the respective attribute.

Symbol on Palette

Category Input widget

Purpose A text field where the user can enter a string.

Events Key, Focus, Value Changed

Important Properties text, valueAsDate, valueAsString,
caretPosition, toolTip, font

Table 6.62. RTextField Summary

RTextFieldCellWidget

Text fields are used to get (single line) input from the user in a RTable.

For more informations about this widget see the documentation of RTextField. The possibilities and functionalities are quite
the same.

RToggleButton

Toggle buttons are used to let the user visually enable an option in an on/off style. If a toggle button is clicked, it will stay
in pushed state if it was previously unselected or vice versa. A toggle button will generate both an Action event and a Value
Changed event if it is selected or deselected.

Symbol on Palette

Category Action / Selection widget

Purpose A toggle button with text and/or icon that allows to select/
deselect an option.

User Interface

314

Events Action, Focus, Key, Value Changed

Important Properties text, toolTip, selected

Table 6.63. RToggleButton Summary

RToolBar

A tool bar lines up widgets in a dock. Although any kind of widget or container can be a component of a tool bar, typically
buttons are used. The look and feel of a tool-bar is determined by the kind of components it contains, but generally it will
remove any borders of the added contents to make them look smoothly integrated. When rolling the mouse over the contents
of a tool bar then the currently pointed at component appears enhanced.

A tool bar can have a horizontal or vertical orientation which can be set with the orientation attribute.

Tip

By using buttons as components with or without text you can create tool bars with or without labels.

Symbol on Palette

Category Container widget

Purpose A tool bar contains other widgets (typically buttons) and
aligns them in a dock style either horizontally or vertically.

Events Focus, Key

Important Properties orientation

Table 6.64. RToolBar Summary

RTree

Tree widgets are used to display hierarchically organized data.

User Interface

315

A tree generates a Tree Selection event if a node is selected and an Action event if a node is double clicked. To support the
lazy loading of data, the generation of a Tree Load event can be configured in the Tree Data tab of the Widget Configuration
view. Additionally the tree widget supports Tree Expansion Events that occur whenever a node is expanded or collapsed.

The data source of a tree is always a Tree object. The Widget Configuration Tree Data tab allows you to define the appearance
and rendering of each tree node, which can be based on the tree's value object and/or on a separate info string. It possible to
define style, text, icon and tool tip for each rendered tree label.

The appearance of the rendered tree can be further configured by setting the properties rootVisible (i.e. whether the root
node should be displayed or not) and showsRootHandles (i.e. whether the root node should be displayed with an expand/
collapse handle in front).

The tree widget supports multi-selection of nodes by default. The properties selectedTreeNode;
selectedTreeNodes will return the currently selected node(s).

With the property autoSelectFirstEntry you can have the widget select the first data entry automatically (if data is
present). This has also the effect, that a call to clearSelection() will reset the selection to the first data entry (instead
of clearing). The property is set to false by default.

Note

Because trees tend to contain many items, it is recommended that you place tree widgets inside an RScrollPane
container, so that they become scrollable if the number of items becomes too large for the allocated view port
size.

Symbol on Palette

Category Data widget

Purpose A tree displays hierarchical data. Nodes can be selected,
expanded and collapsed.

Events Tree Selection, Tree Load (configurable), Tree Expansion,
Action, Focus, Key

Important Properties treeData, selectedTreeNode,
selectedTreeNodes, autoSelectFirstEntry,
rootVisible

Table 6.65. RTree Summary

User Interface

316

PDF Viewer Widget

There are two ways to display PDF documents in a Rich Dialog based process. First you can open the PDF in the RBrowser
widget. Internally the RBrwoser widget then opens a real browser in a separate operating system process and in there the
embedded PDF plugin (usually Acrobat Reader) will be used to display the PDF. This has the disadvantage that you have no
real control about the PDF viewing, e.g. if the browser decides to open the PDF document in its own window there is nothing
you can do about it. To avoid such problems, you can use the ULCVPdfViewer widget which is purely Java based and does
not use any external operating system processes. So, you can fully control where the PDF is displayed.

To add a PDF viewer widget to a Rich Dialog use the Choose Bean entry from the palette in the Visual Editor.
Then choose the ULCVPdfViewer and place it on the Rich Dialog. The widget must be used primarily with a Java API
as there is only limited tool support in Axon.ivy, e.g. there is no Drag and Drop of events for the event mapping or there is
no widget configuration view.

To open a PDF document, you simply use the method openDocument(java.net.URL). The PDF viewer does support
most of the actions that users expect from a PDF viewer like printing, zooming, searching or navigating the document
trough the built-in tool bar and status bar. If not required then you can switch off the tool bar and status bar with
setToolBarVisible(false) and setStatusBarVisible(false) .

Developers can use the setXyzToolBarVisible() or setXyzButtonVisible() methods to define whether
they want that their users can use the corresponding command groups or commands respectively. And end users can
customize the tool bar groups and buttons themselves with a popup menu. All these settings are stored when a Rich
Dialog is closed and restored at the next start. If you don't want to allow this to your users, then use the method
setToolbarPopupMenuVisible().

User Interface

317

Portal Display

With the portal display you can create your own portal with Rich Dialogs (from now on called Portlets) . Use the User Dialog
Call element to load your Portlets asynchronously into the display exactly like you do with other displays. The display then
arranges them in a column layout where the number of columns and the column width ratio can be configured.

Note

There is only limited further tool support in Axon.ivy, e.g. there is no Drag and Drop of events for the event
mapping or there is no widget configuration view. To add a portal display widget to a Rich Dialog use the

 Choose Bean entry from the palette in the Visual Editor. Then choose the LiquidPortalDisplay
and place it on the Rich Dialog. Alternatively you can use the widgets by adding the corresponding code in the
Java source of the Rich Dialog yourself. Most of the widget's properties can be set in the properties view of the
Rich Dialog perspective. But to access the full API please write your code in the Rich Dialog source view file
or in IvyScript on the Rich Dialog logic.

The display adds to every Portlet a title bar that offers some generic features. Each Portlet supports off-the-shelf closing,
minimizing, maximizing and title renaming. All without adding a single line of code. Furthermore you can Drag and Drop

User Interface

318

each Portlet in the portal and move it to a new position. The portal supports even two more operations, refresh and handling
a configuration dialog for a Portlet. Let's see how these features can be used:

Refresh

If you want to use the refresh feature, two things must be done:

1. The corresponding button must be visible in the title bar. To do that add the Custom Panel Display Parameter refreshable
with the value true in the Display tab of the User Dialog Call element.

2. The actual refresh must be implemented. To do that the portlet must have a Rich Dialog Method doRefresh() with
no parameters and no return value. Do in this method whatever you need to do.

Configuration

If you want your Portlet to be configurable, then the portal offers some nice facilities to make life easier for you. Four steps
have to be fulfilled:

1. Configuration button in the title bar:

To see that button, just add the Custom Panel Display Parameter configurable with the value true in the Display tab of
the User Dialog Call element that loads the Portlet into the display.

2. Opening the configuration dialog::

As soon as the user clicks on the configuration, the portal fires a Rich Dialog Event with the signature
openConfigurationDialog(String) from the Portlet. So, you need to add the event to the Rich Dialog Interface
of the Portlet Rich Dialog. The String parameter carries a unique ID for the Portlet. The internal name of the Portlet
is used for that. See below for details.

To catch the event, add a Broadcast Event to the Portlet Rich Dialog. In the implementation of the Broadcast you
should first find out whether the configuration dialog should be opened for the correct instance of the Portlet because
the same Portlet can exist multiple times in the display. Here the Portlet ID comes in very handy. Use it to compare to
panel.getName(). The second thing to do in the Braodcast implementation is to open the configuration dialog in
a Rich Dialog call element. Load your configuration dialog asynchronously into the saem window and display as your
Portlet. The only special thing you have to do, is to provide the Custom Panel Display Parameter portletID with the
Portlet ID.

3. Exchanging the configuration data:

The Portlet and the configuration dialog must have some shared data. That's the configuration data that is used to retrieve
or render the content of the Portlet. That's also the same data that is manipulated in the configuration dialog. The portal
uses simple getter and setter Rich Dialog Methods to achieve that.

User Interface

319

a. From Portlet to the configuration dialog: First the portal calls the Rich Dialog Method
getConfigData():java.util.Map on the Portlet. Hereby you are completely free what to put
in that map. In a second step the portal then takes this map and calls the Rich Dialog Method
setConfigData(java.util.Map) on the configuration dialog so that it can work with the map.

b. From the configuration dialog to the Portlet: When the user hits Ok on the configuration dialog, then
the reverse thing happens. First the portal gets the interesting data by calling the Rich Dialog Method
getConfigData():java.util.Map on the configuration dialog. Then this is given to the Portlet by calling
the Rich Dialog Method setConfigData(java.util.Map).

4. Refreshing:

To reflect the changes from the configuration, the portal automatically calls the refresh feature (see above) if the Portlet
supports it. If not it is your turn to make sure that a configuration change takes effect.

Web Page
This chapter shows how Web Pages and -content are used within Axon.ivy.

Using Web Pages (web content) in a Business Process
As an alternative to User Dialogs, you can display Web Pages or other web resources to the user of an Axon.ivy process
application in a Browser to let her interact with the executed process.

Such content is embedded within a business process by using the Web Page element or by using end pages for various elements
in a process (End Page element, a Simple Task Switch element or a Task Switch element). Whenever the process reaches
such an element, then the defined content is presented to the user.

You are free to use HTML-based content (plain HTML, JSP) or other resources (such as images, text files, RTF and many
more) as long as they can be displayed in a web browser. In addition, you are free to use resources from the CMS or from
the web content folder of the project.

Warning

When you re-use resources like JSP pages in different process elements, you need to carefully consider how to
integrate the content with the process. When you access members of the data class (e.g. in the JSP) you must
ensure that this member is accessible in all processes that use the resource. Furthermore, in Web Page elements
you need to ensure that a) there is a way to continue with the process, e.g. an out-link and that b) that way can
be used in all usages of the resource.

Warning

Please bear in mind that Web Pages can only be used if a single HTTP request is available from the client. This
means, that you cannot use Web Pages if at least one of the following conditions apply:

• The current request was not triggered by HTTP (e.g. started by an Event Bean).

• The current task is executed by SYSTEM.

• The process is running in a parallel execution section, e.g. after a Split element.

Creating and Editing Web Pages from within the Process

A Web Page can be created or accessed directly from the process. Open the inscription mask of any page-capable process
element. Depending on whether the page is already defined or not, you will be presented with either of the two scenarios
described in the sections below.

User Interface

320

No page has been specified yet

You can define the Web Page that should be displayed by using one of the following three methods:

1. Enter the path to an existing page by hand. Specify either a CMS path (e.g. /HtmlPages/myPage) that points to a
content object or give a path to a web content file (e.g. commonPages/infoPage.html) instead.

Note that content object paths do not have a file extension, but web content paths do. Web content paths are always
specified relative to the webContent folder of the current project.

If you enter a path to a non-existing web content resource, then pressing the Create button will create an empty file at
the specified location in the webContent folder and open Eclipse's default editor on it.

If you enter the name of a non-existing content page, then pressing the Create button will have the same effect as
described under (3).

2. Select an existing content object by using the content smart button or an existing web content file by using the file smart
button.

You can select any content object and any file, but a "wrong type" error will be displayed if the selected content object is
not suitable as a page. Likewise a "invalid web content path" error will be shown, if you select a file outside the project's
web content folder.

3. Click Create to generate an entirely new page in the content management system.

A dialog will appear that allows you to enter the name and type (normal or JSP) of the new page. The created page will be
associated with the current element and it will be placed appropriately inside the CMS ProcessPages/<ProcessName>
folder (see below).

A page is already specified

Click on Edit to open the specified page either in the content editor (if it is a content object) or the system's default editor
(if it is a web content file) so that you can edit it's contents. You can change the default editor for any file type by opening
Window/Preferences and navigating there to /General/Editors/File Associations.

Alternatively you can use the content smart button or the file smart button to select an entirely different page to be displayed.

You can also edit the specified path by hand if you like.

Where Web Pages are stored
The page that is displayed is either stored in the CMS or in the web content folder of the project.

User Interface

321

By default, CMS pages are stored in the ProcessPages hierarchy in a further sub folder named after the containing process
(e.g. ProcessPages/Main/MyPage). Although it is not required to store the pages within this scheme, it is recommended
to keep your pages separated. All content objects that can be downloaded can be used, especially the Page and JSP types, but
also some Document (e.g. RTF, HTML, PDF or Plain Text) and other types are working.

Pages in the web content folder can be stored in any hierarchy below the project's web content folder (it is not allowed to
use or reference content that is stored outside the project's web content folder). You can use any type as long as it is possible
to render it in the browser of the user.

Note

Some browsers delegate the displaying of certain file types to third party plugins and/or applications depending
on the configuration of the client. Thus this behaviour cannot be controlled by Ivy.

HTML content in the CMS
There are a number of specific content object types that are uniquely used inside HTML Dialog pages. All of them have their
own editors, the usage of which is described in the following sections.

Note

Web Pages can be accessed without starting a process. This allows you to create for example a translated start
page with some process start links. See also chapter Access CMS Content with a Browser.

User Interface

322

Web Page Editor

The Page Editor is used to specify the Style Sheet and Layout of a page. They can either be inherited from their parent objects
in the CMS hierarchy or can be set explicitly. Use the combo boxes to set one of the style sheets, i.e. page layouts which are
contained in the corresponding CMS top level folders. The Search... buttons on the other hand opens a dialog which does
show all CSS and Layout content objects in the whole CMS to select one. So the children content objects of the page represent
the selected Layout (see Layout Editor). The missing or obsolete parts (i.e. children in the CMS hierarchy) of a page (e.g.
after changing layout) may be created or deleted with the corresponding buttons at the bottom of the editor.

HTML Panel Editor

Overview

This is the most important editor to edit your HTML content. Each Web Page (see Page Editor) has sections that are called
Panels and which are defined by the page's layout. Generally, a page has as many panels as are specified by it's associated
layout (see Layout Editor).

In the panels of a page, the actual content of the page is defined. Each content part of a panel is stored as an own content
object below that panel's content object inside the content management:

User Interface

323

The contents of a panel are arranged in a table from left to right and from top-to bottom in a structured manner. Each table
cell contains a single content object or some custom HTML or JSP code.

A panel can be rendered as plain HTML or as a HTML table. If it is rendered with plain HTML cells are simply rendered one
after another. Rows are separated with a
 tag. On the other hand, if it is rendered as a HTML table, each cell will be
rendered as a cell of the table. You can switch the rendering kind using the checkbox As HTML Table. Switching the rendering
influences the available context menu items of a cell and the buttons Table, Row and Cell.

You can switch between the Edit and the Source View of a panel. The Edit View as explained above shows the table of the
panel with its cells. The Source View on the other hand shows the JSP Code that is generated from the Edit View.

Menus

Insert Process Link/Form ... Use this menu to insert a link or form that triggers the continuation of the process after
the page element.

Insert Content ... Use this menu to create sub content objects (Texts, Strings, Sources, Process Links,
Tables, Result Tables, Smart Tables, Images) and insert them or already existing
content objects into the panel.

Insert Attribute Use this menu to insert process attribute values into the panel. The menu will open an
Attribute Browser where you can choose the process attribute to insert. You can specify
a condition that gets evaluated during the rendering of the panel to control whether the
content of the cell is rendered into the panel or not. Moreover you can specify how the
process data value should be formatted.

Insert JSP Use this menu to insert JSP code into the panel.

Context Menus

Edit Opens the type specific editor (Attribute, Content, JSP, ...) of the selected cell.

Edit Condition Opens an IvyScript editor to edit the condition that controls whether the content of the
cell is rendered or not.

Move Use this menu to move the current cell to another location.

Remove Removes the selected cell.

HTML Attributes <...> Table Opens an HTML attribute editor to edit the HTML attributes of the table.

HTML Attributes <...> Row Opens an HTML attribute editor to edit the HTML attribute of the currently selected
table row.

HTML Attributes <...> Cell Opens an HTML attribute editor to edit the HTML attributes of the currently selected
table cell.

Insert Row Inserts a row above the selected cell.

Delete Row Deletes the row of the selected cell.

Merge Cell Left Merges the selected cell with the cell at the left side.

User Interface

324

Merge Cell Right Merges the selected cell with the cell at the right side.

Merge Cell Up Merges the selected cell with the cell at the top.

Merge Cell Down Merges the selected cell with the cell at the bottom.

Split Cell into Rows Splits the selected cell into multiple cells one cell for each row.

Split Cell into Columns Splits the selected cell into multiple cells one cell for each column.

Buttons and Check boxes

As HTML Table Use this checkbox to switch the rendering kind of the panel from raw HTML to HTML table and vice
versa.

Table Use this button to open an HTML attribute editor to edit the HTML attributes of the table.

Row Use this button to open an HTML attribute editor to edit the HTML attribute of the currently selected
row.

Cell Use this button to open an HTML attribute editor to edit the HTML attribute of the currently selected
cell.

HTML Table Editor

User Interface

325

The HTML Table editor can be used to configure a HTML table. In contrary to the Result Table the numbers of rows and
columns is defined here statically. And for each cell the content must be chosen specifically although the content itself may
be generated dynamically at run-time. Using the menu Insert... it is possible to use Text, Source or CMS elements and using
the menu Insert Attribute it is possible to use attributes from the process data in the cell content.

Tip

A Text element can be inserted in a cell by just selecting the cell and starting to type the text. The Text Editor
opens automatically then.

With the buttons Table, Row and Cell or the corresponding entries in the popup menu the HTML attributes for the
corresponding table part can be manipulated. Furthermore you can add/delete table rows and merge or split table cells to
influence the layout of the table. The source tab allows to view and edit the generated HTML code directly.

Typically a table object is not created as an independent content object in the CMS tree, but rather inserted below a Page
content object. The cell contents are no first-class CMS elements but are stored within the HTML table content object itself.

Result Table Editor

The Result Table editor is used to configure the dynamic generation of (HTML) data tables on either DB page or Page process
elements. Typically a result table object is not created as an independent content object in the CMS tree, but rather inserted
below a Page content object when a table gets inserted onto one of the pages panels (using the Panel Editor).

Data Source Specify here the source of the result table's data. You can select a recordset or a list as data source
from the process data attributes.

Visible Columns Select the columns that should be rendered by the result table. You can either use the column
numbers (1,5,8,2,3) or column names (name, first_name, customer_id) in a comma-separated list
to specify subset and order.

Selection Links Hers it is possible to select which column entries that should be turned into a link for the one of the
page's output links. The select entry specifies what value that should be assigned to which result
value (a process attribute). This is used to identify the selected record on the next process element.

Table Caption A caption text for the rendered result table. Macros may be used.

Column Headers Specify the names of the columns as they should appear in the header row as a comma-separated
list. Macros may be used, the order must be the same as specified in the Visible Columns field.

Automatic Headers If selected, then the column headers will be selected from the specification in the database.

Empty Table Text The text to display if the source data is empty. May contain macros.

HTML Attributes Specify the HTML attribute values for table, even rows, odd rows, header cells and column cells.

User Interface

326

For almost all of the above described features, the attributes of the corresponding HTML tags can be edited explicitly by
clicking on the HTML tag button.

HTML Link Editor
Link editor is used to render process and static links. Whereas the execution of a process link will lead to the continuation
of the process (i.e. activate a specific arc in the process model) and the activation of a static link leads to some other HTML
page independent of the process.

Links can be rendered in many different forms, e.g. both the "classical" hyperlink as well as the display of a form with a
submit button are considered to be special forms of links.

All of those different link types are configured with the HTML Link Editor. The link editor can be opened in two different
ways: either by selecting a link content object below a page in the CMS editor tree or by double clicking on a link field in
the HTML Panel Editor.

The following options can be configured for all links:

Link Target (Href) Specify the target of the link that will be jumped when the link is activated. If this is the
configuration of a process link, then a macro that specifies the link that should be executed will
already be specified (see example image above). However, any valid HTTP-link is accepted as
value for this field, e.g. http://www.acme.com.

Link Type Specifies the visual appearance (type) of link that should be configured. Depending on the type
that is selected, the configuration fields below this attribute will change.

Depending on the selected Link Type, additional options are available for configuration.

Configuring Text, Button, Image and Timed Auto-Redirect Links

For Text, Button, Image and Timed Auto-Redirect, the Link Editor allows for configuration of rather simple additional options.
The smart buttons at the right side of the macro fields can be used to either configure the HTML attributes of the rendered
link source or to insert and expand process attributes and content objects.

The following options can be configured for those link types (configuration of a Form Link is described in the next section):

Displayed Text Specifies the text that will be shown to the user and presented as link. This option is available
for the link types Text, Button and Image + Text.

Alternate Text Specifies the alternate text that will be set on the displayed image (is shown by most
browsers as tool-tip when the mouse hovers over the image). This option is only available
for the link type Image.

Time to go in Seconds Specifies number of seconds to wait before the link is activated automatically. This option
is only available for the link type Auto-Redirect (timed).

User Interface

327

Configuring a Form Link

When selecting Form as Link Type the link editor will show a sub-editor that allows you to specify a form and all form fields,
that are initialized and/or set from/to process data. Furthermore, you can configure whether a Submit and/or a Reset button
should be displayed (including the text of the buttons). At the bottom you even have the choice to change the editor's view
for either designing the tabular layout of the form in a graphical editor or directly editing the HTML code.

At run-time the form defined in the Form Field Editor will be rendered in a HTML page. Clicking the submit button results in
the continuation of the process of this element. Therefore, if you disable the submit button you have to ensure that a process
link for process continuation is part of the HTML page (e.g. by adding such a link in the HTML view of the editor).

Configuring Form Field Details

If the Details button of a form field is clicked (when configuring a Form Link) a specialized sub-editor is presented to the
user. This editor allows to configure in detail how a specific form field is to be rendered in HTML.

Several types of input kinds for the form fields are available such as text fields, lists or date pickers. For each type, the
configuration and therefore the layout of this editor may differ slightly and some parts (irrelevant to the chosen) may be
invisible. For most form fields you can define the layout, the default value and the validation.

Input Kind Input Kind Image Description HTML Tag

Text Field A single line input
field for text of all
kind.

<input type="text">

User Interface

328

Input Kind Image Description HTML Tag

Password Field The same as the
text field but each
inserted character is
displayed as black
bullet.

<input
type="password">

Text Area This is a multi line
input field for text of
all kind.

<textarea>

Check Box A simple box
to selecting zero,
one or more of
two or more
options (ideally for
yes/no or true/
false information).
The data that is
associated with the
chosen option is
saved.

<input
type="checkbox">

Radio Button It is sort of a
button for selecting
one and only one
of two or more
options which are
mutually exclusive.
The data that is
associated with the
chosen option is
saved.

<input
type="radio">

Combo Box A text field with an
attached drop-down
list to select from
several predefined
values.

<select size="0">

List A list to choose from
several predefined
values.

<select
size="nbOfOptions">

File Upload With this input kind,
the user can choose
a file to upload
to the Axon.ivy
Engine file area.

<input type="file">

Hidden Field Hidden fields can
be used to
transfer additional
data invisible for the
user (for use in e.g.
JavaScript or e-mail
transfer of forms)

<input
type="hidden">

Date Picker To choose a date.
Note that the date is
displayed according
to the language

Implemented in
Java Script

User Interface

329

Input Kind Image Description HTML Tag

set in the browser
of the user (while
simulating in the
Designer you can set
the language with
a toolbar button).
Note too, that if
dates are entered
in a 2-digit format,
then Axon.ivy will
interpret numbers
within the next
20 years as years
in the future. All
other numbers are
interpreted as years
from the past (e.g.
in 2010 entering
30 leads to 2030
whereas entering 35
leads to 1935). The
Javascripts used for
the Date Picker
are copied into the
webContent folder
of the project
to scripts/datepicker
and scripts/jquery.

Table 6.66. All the different input kinds

Displayed Name Axon.ivy adds a text label to the form field for reference. The text of this label can be
set here using process data or CMS entries.

Orientation It is possible to choose how the label and the form field are positioned to each other,
either side by side or super-imposed.

Initialize with... You can use process data, function return values (both value from attribute) or plain text
(initial value) to set a default value for the form field. For Check Boxes it is additionally
possible to select whether it is checked or not.

Warning

Make sure that the data types of the default value matches to the chosen
form field otherwise an error will be thrown at runtime.

Maximum Characters The maximum number of characters which are allowed to enter. The user will not be
able to enter more characters.

Size (Columns) You can set the width of the form field to layout your forms nicely.

Options Here the content of the list based form fields (Combo Box, List, Check Box, Radio
Button) can be defined. You can either choose an Ivy Script recordset or list (select
options form attribute) or you can define the content in a table with values and display
texts. For recordset based content, the first column is used as values and the second
column as display texts (all other columns are omitted). For list based content all the
list entries are used as value and as display names.

User Interface

330

Values per Row For check boxes and radio buttons it is possible to define how many options are
rendered in the same line (or row)

Rows Only used for the list form field. It represents the number of visible rows in the list. If
more items than rows are defined, the list will have scroll bars.

Mime Type Is only used for the file upload form field. The mime type corresponding to the type
of file which can be uploaded.

Input Validation By selecting an input validation script you may validate the values that an user enters
in a specific field on the client, e.g. before the form is submitted. If the user tries to
submit a form but input validation fails on some of the form fields, then a message will
be displayed to the user and the form will not be sent.

Axon.ivy offers you a number of built in validation functions that can be selected from
the Input Validation combo box. The scripts that are available depend on the input kind
of the currently edited form field (e.g. different scripts are available for checkbox and
text input fields).

If the built-in scripts do not satisfy your needs, you may provide your own validation
scripts written in JavaScript. Read the section How to provide own Validation Scripts
to learn more about this topic.

Warning

Please note, that JavaScript must be enabled in your client's browsers in
order for the validation scripts to work!

Alert message if invalid For any selected Input Validation a predefined warning message exists. If you don't
like the default message, you may specify a custom message that will be displayed if
the entered value is invalid.

You may use the content smart button to select and insert a textual content object that
should be displayed as message or as part of your message. This allows you to specify
messages in multiple languages.

If you leave the field empty, the default message of the selected validation script will
be displayed.

Smart Table Content Editor

Overview

On the Smart Table Content editor you configure what content to show in the smart table. You can configure the data source
for the table. Furthermore, you can influence the visual look and feel and set options such as header, body or footer label
texts, for each entry in the table.

http://www.iana.org/assignments/media-types/

User Interface

331

Figure 6.23. The Smart Table Content Editor

Accessibility

Content Management -> Smart Table Content Object

Features

Configuration Select the Renderer Configuration which is used when the Smart Table is rendered and
then displayed on the client browser. See the Smart Table Configuration for more details.

Source Select the type of the source for your Table. Either List, Recordset or Record.
Define in the IvyScript text field the path to your source.

Table Caption Enter a text to display as caption of the table. Use IvyScript macros if needed. example:
<%=ivy.cms.co("/labels/header")%>

Columns Configuration: Columns (a column configuration
is shown as row in the editor)

Field: Define the name of the field of your data
source to map to the current column. If your data
source is a list, then the list elements must contain
a field or method with the configured name (e.g.
userName or getUserName()). If your data
source is a recordset, then the records must have
a field with the configured name. The value of the
field is mapped to the variable value which you
can use in the IvyScript text field of the Value field.

Header: Enter a text to display as header
of the column. Use IvyScript macros if
needed, e.g. <%=ivy.cms.co("/labels/
header")%>. Note hat this has only an effect if
the Show Header check box is selected too.

Visible: Enter a IvyScript expression which results
in a Boolean value, to configure the visibility of the
column. If no condition is set, then the column is
visible.

Value: Enter a IvyScript expression to configure
what label that should be displayed in the table
cell. This IvyScript is executed for every cell in this
column (once per row in the table).

User Interface

332

Link: Choose the link where the process goes if we
click on a cell on this column. It is also possible to
define the process attributes where to store the row
index, the column index or the column name.

Sortable: Activate this check box if you want your
table to be sortable. Clicking on the header of a
column triggers then a sorting of the whole table
according to the selected column. The variable
value is used for sorting which is defined in the
column Field.

Footer: Enter a IvyScript expression to configure
what label that should be displayed in the table
footer.

<>: Allowed to edit the HTML attributes for the
table header, body or footer cells. E.g. choose
colors or borders. Note that this specific settings
of HTML attributes will override any settings from
the configuration.

Actions Add: Adds a new column configuration to your table definition. The column
configuration will be shown as row in the Columns Configuration table.

Remove: Removes the selected Column Configuration(s) from your
Columns Configuration table.

Up: Moves the selected Columns Configuration(s) up in the table. This
means that the column(s) moves one position to the left in the resulting table.

Down: Moves the selected Columns Configuration(s) down in the table. This
means that the column(s) moves one position to the right in the resulting
table.

Show Header: Activate this check box if you want your table to have a
header row.

Autom. Header: Activate this check box if you want the system to label
your headers.

Show Footer: Activate this check box if you want your table to have a footer
row.

Variables in: The process data at the point of time when this CMS element is
executed.

index: Table index of the currently selected table entry.

originalIndex: Index of the currently selected entry in the data source
(without respect to the visual order, e.g. after a sorting).

value: The value of the currently selected field (as defined in the field
column) in the data source element (i.e. record).

it: The currently rendered element of this widget's list data source (only
available, if the source is of type List).

User Interface

333

list: The list defined as data source (only available, if the source is of type
List).

record: The currently selected record (only available, if the source is of
type Recordset).

recordset: The recordset defined as data source (only available, if the
source is of type Recordset).

Max. rows per Page Enter a IvyScript expression to configure the maximum number of rows are shown per
page.

Empty Table Text Enter a plain text that will be displayed if the table source is empty.

JSP Editor
The JSP editor is used to edit a JSP content object which can be used in the Web Page, End Page, Task Switch or Simple
Task Switch process elements.

Inside JSP content objects you can make use of the Environment Variable ivy. It is imported and declared as follows:

 <%@ page import="ch.ivyteam.ivy.page.engine.jsp.IvyJSP"%>
 <jsp:useBean id="ivy" class="ch.ivyteam.ivy.page.engine.jsp.IvyJSP" scope="session"/>

You can also use the in object (i.e. process data) of the process where the associated process element is located. You can
access the process data by using the ivy.html.get() method, e.g.:

 <%=ivy.cms.co("myUri")"%>
 <%=ivy.html.get("in.myString")%>

Furthermore you can insert references to content from the web content directory into your JSP content objects, e.g.:

 <jsp:include page="/jspToInclude/include.jsp" />

Layout Editor
The Layout editor is used to edit a JSP Layout content object which defines the Layout of an HTML dialog page (see Page
Editor).

Inside the Layout JSP content objects you can make use of the Environment Variable ivy or you can insert references to
content from the web content directory (see JSP Editor).

For the layout creator there are some useful functions on the ivy variable:

Layout functions Description

ivy.style() Returns the URL to the CSS style, which is set on the
current HTML dialog page (see Page Editor).

ivy.content("coName","coType") The layout creator can define a placeholder for content,
that the page designer should fill in. When a page with this
layout is created the specified placeholder is created as
a content object with the given name and type under the
HTML dialog page whose value is set by the page designer.
At execution time the value of the content object is set as a
String into the layout.

ivy.panel("panelName") This creates a Panel content object with the specified name
under the HTML dialog page when a page with this layout is
created.

User Interface

334

A very simple JSP Layout example which includes the style of the page, creates a content object named Caption with the type
String and a Panel content object with the name Panel1 looks as follows:

<%@ page import="ch.ivyteam.ivy.page.engine.jsp.IvyJSP"%>
<jsp:useBean id="ivy" class="ch.ivyteam.ivy.page.engine.jsp.IvyJSP" scope="session"/>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <link rel="stylesheet" type="text/css" href="<%=ivy.style()%>"/>
 <title><%=ivy.content("Caption","String")%></title>
</head>
<body>
<jsp:include page='<%=ivy.panel("Panel1")%>' flush="true"/>
</body>
</html>

Link Browser
The link browser can be used to insert a HTML link tag. The appearing dialog shows the available link
types to choose from. If you select a link type and then press Ok (or double-click the link type), then another dialog appears
to configure the link.

Figure 6.24. Link Browser

Visible Text The visible text of the HTML link that will be inserted. Or, in HTML language, the text between the
<a> and the tags.

Link Type The type of link to insert.

Link Type Description HTML href link target

Process A link to continue the process with the
corresponding sequence flow out of the
Web Page element that shows this page.
The link target is addressed relatively,
i.e. uses the same protocol like the
request to the page. See the section for
the inscription mask of the web page
element for further information about
process links.

<
%=ivy.html.ref("MyLink.ivp")%>

Process (SSL on) Same as the process link, but addresses
the process link absolutely using
HTTPS.

<
%=ivy.html.ref("MyLink.ivp",
true)%>

Process (SSL off) Same as the process link, but addresses
the process link absolutely using HTTP.

<
%=ivy.html.ref("MyLink.ivp",
false)%>

User Interface

335

Link Type Description HTML href link target

Content Object This is a link to a content object in
the CMS. Note that not all content
object types may be used but only the
ones that represent file-based resources.
This holds true especially for file-
based content objects such as images or
documents.

<%=ivy.html.coref("/uri/
to/my/jpeg")%>">

Process Start A link that starts a new process. Note that
the process is started in a new case.

<
%=ivy.html.startref("myPID/
start.ivp")%>

Web Content For linking to a resource in the web
content folder

<
%=ivy.html.wr("myResource")%>

HTTP Address Inserts a link to an arbitrary web resource
such as a web page or a video on the web.

http://www.example.com

Table 6.67. Link Types

Other content editors
Content editors that are not described in this chapter are described in the Content Object Value Editor chapter.

HTML content in the Web Content Folder
Although it is recommended that you store all (or most of) your content in the project's CMS, as an alternative you can place
web resources into a folder within the root folder of your project with the name webContent.

These web content files can be referred from CMS pages either by addressing them relatively (to the web content directory)
or by using the method ivy.html.wr(fileNameRelative). Of course, you can also reference directly from one web
content file to another (e.g. a web content HTML file that displays a web content image with a img tag.). It is even possible to
mix references between CMS and web content files (e.g. a JSP in the web content includes a JSP in the CMS which imports
a JavaScript file in the web content and so on).

Warning

Web content files can always be referenced relative to the web content folder. But in contrast to content objects
in the CMS, resources in the web content folder are only visible in the same project. If the resource is not found
then there is no lookup in the required projects.

Tip

To gain access to Axon.ivy functionality please insert the following code to your hand-made JSP page in the
web content folder:

 <%@ page import="ch.ivyteam.ivy.page.engine.jsp.IvyJSP"%>
 <jsp:useBean id="ivy" class="ch.ivyteam.ivy.page.engine.jsp.IvyJSP" scope="session"/>

HTML Best Practice

How to provide own HTML Validation Scripts

Inside the Form Field Details Editor you may specify client side validation scripts to validate user input before submitting a
form. If the validation fails (i.e. some user input is invalid) then the form will not be submitted.

Out of the box, Axon.ivy allows you to select from a number of predefined scripts, e.g. Integer > 0 as shown below:

User Interface

336

Testing for Integer > 0 may be fine for some cases, but what if you need to test whether an integer value is greater than 10
and smaller than 20? In this case you need to provide your own validation script to test your specific input requirements.

HTML validation scripts are written in JavaScript and are stored in a *.js file. The script file contains a header line and a
check function. For example:

<!--ivy.input_validate name_de="Ganzzahl: 10 < x < 20" name_en="Integer: 10 < x < 20"-->
function integerBetween10And20(field,msg,loc)
{
 msg_en=field.name+" must be a Number between 10 and 20"; // default message en
 msg_de=field.name+" muss eine Zahl zwischen 10 und 20 sein"; // default message de

 if(field.value.length==0
 || isNaN(new Number(field.value))
 || !(field.value > 10 && field.value < 20)) // check function
 {
 if(msg!=null && msg.length>0)
 alert(msg); // alert with custom message, if defined
 else if(loc=="de")
 alert(msg_de); // alert with default german message
 else
 alert(msg_en); // alert with default english message
 return false;
 }
 else
 {
 return true;
 }
}

The header of the script file defines the name of the script as it is displayed in the validation combo box of the Form Field
Details Editor.

The JavaScript validation function must always define the same 3 parameters: field is the field that is being validated,
msg is the custom validation alert message that may optionally be defined when selecting a validation script and loc is the
language code that will be provided by the Axon.ivy runtime system.

The above defined checks if the given input field contains a number between 10 and 20 and if so, true is returned. If the
value is not a number or not between 0 and 20, then an alert message is shown to the user and false will be returned (which
will prevent the sending of the form, as long as the field value is not correct).

In order for the script to be able to selected from the Form Field Details Editor, it must be located in the webContent/scripts/
validation folder of the Axon.ivy project where it will be used:

User Interface

337

Once you have copied your script to this location, it will become available in the validation selection combo box of the Form
Field Detail Editor:

Tip

If you don't like the behavior of any built-in scripts then you may change them as well. Simply edit the associated
validation script file.

You may generally edit the available validation scripts at any time. The changes will become effective
immediately on save (unless browsers or other internet entities use a previously cached copy of an old script).

Warning

Please note, that JavaScript must be enabled in your client's browsers in order for any validation scripts to work!

Also make sure that the name of your script function and the name of your script file are exactly identical
(including capitalization). The script will be referred by name of the file. If it does not match the actual function
name, then the script will not be executed, and validation will not take place without any obvious error.

338

Chapter 7. 3rd Party Integration
Introduction

The basic idea of integrate Axon.ivy with 3rd party systems is either to invoke an operation on a foreign system out of an ivy
process (call) or to have a remote system that invokes an operation in Axon.ivy (being called). There are several options to
implement such an integration. This chapter will give you an overview.

Java Interface
The generic approach to integrate 3rd party system with an ivy process is the usage of the Axon.ivy Java interface. The Java
interface is provided in following process elements:

“Program Start” Triggers the start of a new process upon an (external) event.

“PI (Programming Interface) Step” Executes generic Java code - which may interact with a foreign system.

“Wait Program Intermediate Event
”

Interrupts process execution until an (external) event occurs.

“Call & Wait ” Basically a combination of the PI and Wait process elements.

Database
A simple way to integrate Axon.ivy is the usage of an external database. From an ivy process, database contents can be read/
written by “DB Step ” or by using JPA.

Web Services
SOAP based web services are often used to integrate various systems together. The tooling of Axon.ivy makes the integration
of remote web services very easy and intuitive. There is no need to care much about the technical details behind the scenes.

Call a remote Web Service
To call a remote web service it has to be registered in the “Web Service Clients Editor”. Just add a new web service entry,
enter the WSDL URI and generate a client that can be used later on in your process.

After that a “Web Service Call Activity” can be used to call the remote web service. Sending data from your business process
to the remote service and the integration of returned data from the service is easy. It works like other well known data mapping
tables.

Provide a Web Service for third parties
If you need to expose an interface to your application for third parties, you can provide it as SOAP web service.

To define a new web service interface, add a new process of type Webservice to your project. Define the supported parameters
by configuring the “Web Service Process Start” event. Now you can implement the business logic of the web service just a
simple as any other process flow.

Once the service is implemented. Start the process engine and hit the link to the WSDL service definition. Share this WSDL
with the third party that is interested in your service.

Getting started
Have a look at our video tutorials to see web service integrations in action.

https://developer.axonivy.com/tutorial/

3rd Party Integration

339

If you are looking for web service integration examples with Axon.ivy, have a look at the ConnectivityDemos sample project
in the Designer.

REST Services
REST (representational state transfer) is an architectural style based on resources to provide inter-system communication.

The Java API specification for RESTful Web Services is called JAX-RS. It provides portable APIs for developing, exposing
and accessing Web applications designed and implemented in compliance with principles of REST architectural style.

Axon.ivy uses the reference implementation libraries of JAX-RS called Jersey.

Call a remote REST Service
To call a remote REST service it has to be defined in the “REST Clients Configuration”. After that a “REST Client Activity”
can be used to call the REST service.

Examples can be found in the ConnectivityDemos project which is packed with the Axon.ivy Designer. It is located under
[DesignerRoot]/applications/samples/ConnectivityDemos.iar.

Provide own REST Services
To provide a custom REST services from an ivy project, JAX-RS annotations can be used. A REST resource is created by
adding a Java class to the src directory. The Java class has to use the correct annotations (as shown below), then it will be
detected as REST resource and published automatically. After publishing, the resource will be available on the base path /
ivy/api/.

/**
 * Provides the person REST resource
 * on the path /ivy/api/myApplicationName/person
 */
@Path("person")
public class CustomProjectResource {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public Person get() {
 Person p = new Person();
 p.setFirstname("Renato");
 p.setLastname("Stalder");
 return p;
 }
 }

Note

To call a modifying REST service via PUT, POST or DELETE the caller needs to provide a HTTP Header
called X-Requested-By with any value e.g. ivy. This is the Jersey provided protection of REST services
against cross-site request forgery (CSRF). If the CSRF header is not provided on a modifying REST request the
request will fail with an HTTP Status 400 (Bad Request).

User provided REST services via GET, HEAD or OPTIONS should therefore be implemented in a way that
they don't modify data.

Further information is available in the JAX-RS API Specification. If you are looking for a sample about how to use JAX-RS
in an ivy project, you can study the ConnectivityDemos sample project in the Designer.

Workflow API
Axon.ivy provides a basic Workflow API REST Service. It can by used to enable remote systems to request information
about tasks of a user etc.

https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html#package.description
https://jersey.github.io/
https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html#package.description
https://github.com/jersey/jersey/blob/master/core-server/src/main/java/org/glassfish/jersey/server/filter/CsrfProtectionFilter.java
https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html#package.description

340

Chapter 8. Configuration

Configuration Management
This chapter explains the configuration concept of Axon.ivy and describes the configuration editor and the various
configuration types.

Configuration Management

Axon.ivy allows for individual configuration of many of it's features, specifically for the following:

Environments Define environments for your project

Global Variables Define global variables for your project and assign environment values for global variables.

Widget Styles Define logical GUI styles for all available Rich Dialog widgets and containers.

Output Format Define output formats for various data types.

Input Validation Define validation policies for user input.

The specifics of the above described configuration types are explained in more detail in a separate section.

A configuration is always associated with a type (the type of object that it configures) and with an unique name. When applying
a configuration to an object, only the name of the configuration must be given, because the type is defined by the object
being configured.

By consistently defining and using the logically named configurations instead of setting properties individually on each
configurable object you can later easily change or redefine the looks and behavior of the application in a single place.

All configurations can be created, edited and deleted using the Configuration Editor.

Tip

In Axon.ivy, each project has it's own configuration database.

Lookup of any configurations is performed by an (type, configuration name) request. If the look-up of such a
configuration fails for the current project then the configuration databases of the required projects are searched
with the same query recursively. With this mechanism, configurations can effectively be shared among projects.

Since the current project is always asked first for a specific configuration, you can easily overwrite configurations
that come from a required project, simply by re-defining them locally (on the same type with the same name).

Warning

When creating a new project with the New Project Wizard you will be asked if default configuration content
should be created for the new project. You should always disable this option if you're creating a project that will
be dependent on other projects. If you don't disable it then all of the default configurations that are defined in the
base project will be redefined automatically in the new project (and thereby shadow the inherited configurations),
which may lead to unexpected behavior of the application.

Configuration

341

If you unintentionally forgot to disable the option in the wizard you can still manually delete all configurations
that have been created in the content database using the Configuration Editor at a later point of time.

Configuration Editor
The configuration editor is used to add/edit/delete configurations in the hierarchically organized configuration database of
a project.

The configuration editor consists of different parts that are described separately below:

• Configuration Tree

• Configuration Editor Area (with header showing Type/Name of currently selected configuration)

• Multi-Language Selector (not for all configuration types) This part is only visible if you have enabled the multi-language
feature in the Axon.ivy preferences. Axon.ivy preferences > Configuration > Show Multi language Configurations

Generally, configurations are selected from the tree on the left hand side of the editor and edited in the details area on the
right hand side. Modification of the configuration tree is performed with various actions that are available from the tree's
context menu.

Accessibility

Axon.ivy Project Tree > double click on the entry in the tree.

Configuration

342

Configuration Tree

The configuration tree shows the currently defined configurations inside a hierarchically organized tree. Configurations ()
are associated with a configuration class or configuration type () which in turn are logically grouped in a hierarchical folder
structure ().

Only configuration nodes can be edited in the tree, the structure of the configuration database (i.e. the folders and types) is
given by the system and cannot be changed.

The following operations are available from the context menu of the various configuration tree nodes:

 Add configuration Adds a new configuration below the selected configuration class node.

 Rename Renames the currently selected configuration.

Warning

Renaming of a configuration does not update the objects that currently use
the configuration with the old name. I.e. objects or scripts that used the old
configuration name may not produce the expected outcome anymore, because the
specified configuration does no longer exist. Typically this leads to the fallback of
using the default configuration of the respective configuration class.

 Delete Deletes the currently selected configuration node.

Warning

Deleting configurations may lead to the same effects as renaming them. See
warning above for a description of the possible consequences.

 Copy Copies the selected configuration into a new configuration with a name prompted from the user.

Note

Please note that you don't have to paste the new configuration, it will be pasted
automatically next to the selected source configuration, because a configuration is
always associated with exactly one configuration class. It is not possible to copy
a configuration of type A to a type B.

 Refresh Refreshes the configurations below the selected node.

Configuration Editor Area
The editor area shows a different editor depending on the configuration type (also called configuration class) of the currently
selected configuration. The individual editors are described in the configuration types section.

The title bar of the editor area shows the type (i.e. the configuration class) and the name of the currently selected configuration
as <ConfigClassName>/<ConfigurationName>.

Configuration

343

Multi language Configuration Selector

Enable the multi selection configuration by setting the flag in the Axon.ivy preferences.

Some configurations can be defined in multiple languages because they contain language specific settings. The validation
configurations may have to validate input differently if it is entered in another language.

Tip

Use CMS references for the error message property in order to support multiple languages.

The language selector is shown only for configurations that support multiple language values per configuration. Use it to
select the language of the configuration that you want to edit.

Features:

 Add new language value Adds a value in a new language to the currently selected configuration. The contents of
the last shown value are copied as initial content to the new configuration value.

Delete language value Clicking on this button removes the currently shown value from the set of values for this
configuration. Only works if more than one language value are defined.

Renderers Configuration
Renderer Configurations are used for specific Content Object when they are rendered, the result then is displayed on the
client browser.

Smart Table Configuration Editor

The Smart Table Configuration editor is part of the Configuration Management. See Configuration Editor for more
information. A Smart Table Configuration can be added by using the add configuration function. The name is used in the
Smart Table Content Object Editor for choosing a specific Configuration.

org.eclipse.ui.window.preferences(preferencePageId=ch.ivyteam.ivy.designer.preferences.ConfigurationPreferencePage)

Configuration

344

Figure 8.1. The Smart Table Content Editor

Table Settings The HTML attributes settings for the table and the caption HTML elements.

Header Settings The HTML attributes settings for the table header group (thead element), the header row
(tr element) and the header cells (th elements).

Body Settings The HTML attributes settings for the table header group (thead element), the header row
(tr element) and the header cells (th elements).

Footer Settings The HTML attributes settings for the table body group (tbody element), the body rows
(tr elements) and the body cells (td elements). Here it is possible to define different
configuration for the rows and cells depending if they are displayed on an even or odd
row position. The cells can also be different if they are in a even or odd column, in the
first or last column or if they are in the column which is actually sorted. The first and last
column settings does override the even or odd columns settings and the sorted column
setting does override all other settings.

Sort Settings Enter the text which is displayed in the header if a column is sortable. Then Ascending and
Descending values are shown. When a column actually is sorted then the Sorted ascending
or Sorted descending values are shown.

Page Selector Settings Enter the format of the page selector, where it is shown (default: bottom) and the values
displayed for the first, previous, next and last page to show. For the format there are the
following possibilities:

Symbol Description

{|<} Link to jump to the first page is shown with
the value configured with the setting "First
page".

{<} Link to jump to the previous page is shown
with the value configured with the setting
"Previous page".

Configuration

345

Symbol Description

{123} Links to jump to every page is shown with
the page number.

{>} Link to jump to the next page is shown with
the value configured with the setting "Next
page".

{>|} Link to jump to the last page is shown with
the value configured with the setting "Last
page".

{n} The number of the actual page is displayed.

{m} The number of the total amount of pages is
displayed.

{x} The number of the first showed row is
displayed.

{y} The number of the last showed row is
displayed.

{z} The number of the total rows in the table
source is displayed.

Table 8.1. Format Symbols

Configuration Types
The configuration database of a project contains configurations for various configurable targets (e.g. widgets, date or time
values, input text fields, etc).

The user can define configurations for the following three aspects of an application: formats, styles and validation. Each of
those aspects encompasses a number of configurable types (e.g. date or time or number) for each of which an arbitrary number
of named configurations can be defined, which can then be referred from different locations in the configuration.

This section briefly discusses the different configuration types and explains the usage of their respective configuration editors.

Format Configurations

Purpose

Format configurations define how values of a specific type will be rendered when output to the user. Formats can be defined
for all the base types of IvyScript, i.e. Boolean, Date, DateTime, Time, Number, and String. All non-null values of those
types may be output as formatted strings by calling the format("<format name>") within any script.

Examples:

panel.label.text = in.selectedDate.format("long");
out.invoice.customerNumber = wsData.customer.format("customer_id");

Editor

The format configuration editor allows to specify various ways of formatting for the different IvyScript base type values. The
formatting options (described below) vary from type to type; not all options are available on all types.

Tip

Format configurations are always language dependent. Just watch the Preview editor area after each selection
or option that you enable for an understanding what the effects are for each language.

Configuration

346

Format Type Select a predefined kind of formatting. The selected format kind may be further specified in the editor
areas Option, Format Pattern and Format Script (depending on which kind that was selected).

Option This editor area is only available for some of the Number format kinds. The number of digits for the
integer and/or fraction part may be selected (-1 stands for as many as needed). If you select grouping
then a group character will be inserted to group the integer digits of the formatted number.

Format Pattern This group is only available if you have selected the PATTERN format from the Format Type list.

If Pattern is selected as format then this combo box allows for a selection from a number of predefined
patterns. Use Script if you'd like to specify an own pattern format.

Format Script This group is only available if you have selected the SCRIPT format from the Format Type list.

Specify your own format with a script. The value variable will contain the value to be formatted. If
you want to specify different patterns for different languages you should use the language selector to
create multiple configurations for various languages.

Preview Shows an instant preview of the configured formatting applied to a default value.

Style Configurations

Purpose

Style configurations define the appearance of widgets when rendered as part of an user interface. Styles can be defined for
each widget and container type separately, e.g. for Label, TextField or BorderLayoutPane. You can also specify general
Styles that can be used for all container and widget types.

The Look up for the right settings to apply to a specific widget takes place in a provided order. The first match wins. Each of
the following six pints will be evaluated respective to the project dependency:

1. Local Style set via the Widget Configuration.

2. Widget style (e.g. for a RLabel) set by a reference in the Widget Configuration.

3. The style with the same reference as for point (2) of the RWidget type.

4. Default style of the specific widget (e.g. RLabel).

5. Default style of the RWidget type.

Configuration

347

6. Styles set in the Properties view or in the Java source code.

Note

The dependent projects are browsed by a breadth first algorithm.

Editor

The style configuration editor allows to specify style properties for each widget or container type. Not all widget types have
the same properties that may be specified.

Note

The layout style properties are layout dependent. They may not have an effect, if the widget is added to a different
layout than the property is intended for (mostly GridBagLayout). For example, the property weightX will not
have any effect if the widget is added to a BorderLayoutPane.

General Define general properties such as the font, the foreground color and the background color.
Setting of the background color may not have an effect, if the widget or container do not have
opaque to true (this is look-and-feel dependent).

Warning

The Look&Feel may override your settings. Specially the Background is usually
overridden by the Look&Feel.

Layout Style Settings to be used when the configured component type is placed within a specific layout.

Insets Insets (i.e. inner padding) that should be applied to the component. Padding will be applied
within the specified size (i.e. the actual size of a component is given by it's specified size minus
the inset values).

Margin Margin (i.e. outer padding) that should be applied to the component. The specified margin will
effectively be added to the specified size of a component.

Alignment Position Arrangement definition for components that have a text label and an optional icon.

Configuration

348

Size Define the maximum, minimum and preferred size of a component. The specified values will be
taken into account by the layout manager of the container where the component is added.

Input Validation Configurations

Purpose

Validation configurations can be specified for the following types of input data: Date, DateTime, Time, Number, Percent
and Regular Expression. The validation type Regular Expression(formal String) can be used to validate any kind of data.
The result of a validation is always either true (valid) or false (invalid).

Each validation configuration contains of a set of general settings and a set of specific settings that are dependent on the
selected type of validation.

Editor

The validation configuration editor allows you to specify various kinds of input validation that can be applied to user text input.

General Settings

Description A short verbose description of the validation. This text will be shown in the widget configuration
to help selecting the correct validation.

Validation Message Enter the message that will be displayed to the user on a tool tip, if the entered input is not valid.
Use CMS (Content Management System) references here, in order to support multi language
messages.

Specific Settings

Specific setting vary between the different validation types The list below describes all available settings.

Format Defines the format on how the value will be presented to
the user on the UI. Select a format out of your format
configurations.

Table 8.2. Date Validation Type

Format Defines the format on how the value will be presented to
the user on the UI. Select a format out of your format
configurations.

Table 8.3. DateTime Validation Type

Configuration

349

Format Defines the format on how the value will be presented to
the user on the UI. Select a format out of your format
configurations.

Table 8.4. Time Validation Type

Format Defines the format on how the value will be presented to
the user on the UI. Select a format out of your format
configurations.

Max Maximally permitted number value.

Min Minimally required number value.

Table 8.5. Number Validation Type

Format Defines the format on how the value will be presented to
the user on the UI. Select a format out of your format
configurations.

Table 8.6. Percent Validation Type

Validation Expression A regular expression that the entered input must match. This
expression is not evaluated until the field loses focus.

Input Filter Expression A regular expression that the input must conform to in order
to be set on the widget. Default value is '.*'

Max Length Maximum length of the input text.

Table 8.7. Regular Expression (String) Validation Type

Validation Framework
The validation framework enables a Rich Dialog developer to implement the needs for GUI widgets that give feedback to
the user about its entries in the GUI widgets. E.g. it draws a red background into a RTextField if the entered value does not
conform to a date if a date is expected.

Supplied Features by the Validation Framework
Background Coloring The background of the supported widgets can be colored do to its validation or mandatory

state.

Tool tip The tool tip of the supported widgets is decorated do to its validation and mandatory state.

Server Side Validation Its possible to set a error on a supported widget from the server side.

Supplied Widgets The framework supplies two widgets that are not on the palette: RErrorHeader and
RErrorView.

Widgets of the Validation Framework

Widget Mandatory State Validation Types

RTextField yes all

RComboBox yes no

Configuration

350

Widget Mandatory State Validation Types

RTextArea yes no

RLookupTextField yes no

RButtonGroup yes no

RCheckBox yes no

all RContainers inherited inherited

Table 8.8. Supported Widgets of the Validation Framework

Widget Description

RErrorHeader A CollapsiblePaneContainer that shows the current
errors of the observedContainer widget in a list. The
list will be updated as soon as some content or state of the
observed container or its children changes.

Important properties: ShowMandatoryErrors,
VisibleMessages

RErrorView A widget that shows the errors of the observed container in a
list. The list will be updated on each client-server round trip.

Table 8.9. Supplied Widgets by Validation Framework (not on the palette)

Configurations
General framework configurations Edit the file %AXON_IVY_INSTALL%/configuration/validationconfig.any in order to

configure the framework for your needs. The configuration file lets you configure the
following properties:

mandatory-error-message The message that will be displayed on the tool
tip to the user if the mandatory field has no user
changes.

mandatory-background-color Color of the background if the field has no user
changes.

error-background-color Color of the background if the field has
erroneous user changes.

background-feedback Set this flag to true if the background feedback
should be enabled.

show-highlight-color-when-
disabled

Set this flag to true if the background feedback
should be enabled even if the widget is disabled.

Tip

The configuration file validationconfig.any changes the validation
behaviour for the whole designer/engine not only for selected project(s).
This setting will not be uploaded automatically but has to be set up
manually on the Engine just like on the Designer.

Programming Interface (API)
The API of the Validation Framework is very slim. It consist mainly of a IValidator object per supported widget. To
access this IValidator object you can call the method ivy.rd.getValidator(widget). Some widgets offer special

Configuration

351

properties to get validated values (e.g. valueAsNumber on RTextField if validated for number). In case the entered value is
not accepted by the actual validation, then a so called INVALID value of the specific IvyScript type is returned by the widget
(e.g. Date.INVALID from RDatePicker's valueAsDate property).

All RContainers implements the IEnabler interface, that enables those widgets to act as enabler for other widgets (E.g.
a submit button).

The IValidator object returns IvyErrorObjects if you ask for pending errors on a IValidator.

IValidator

hasErrors()

getErrors() : List<IvyErrorObject>

getError() : IvyErrorObject

showErrorMessage(String errorMessage, Serializable illegalValue)

addPropertyChangeListener(PropertyChangeListener listener)

removePropertyChangeListener(PropertyChangeListener listener)

Table 8.10. ch.ivyteam.ivy.richdialog.server.validation.IValidator

IValidator

getMessage() : String

getParameter() : Object[]

getError() : IvyErrorObject

getIllegalValue() : Object

Table 8.11. ch.ivyteam.ivy.richdialog.shared.IvyErrorObject

Tip

Server side validation cannot be used alone, it must be combined with a client side validation!

Environments
This section briefly discusses the usage of environments in your projects .Developers should have the possibility to configure
multiple environments (pointing to an infrastructure) and decide at deployment, runtime and/or design time which environment
should be used for the application. Here are some examples where environments can be used

• Companies provide different environments for their software products, like Development, Test and Productive. Each
environment has its own infrastructure including databases, web services and other connections used by the project.

• Multi Client Capability. When the user logged into the system he can choose the client (German: Mandant) (e.g. Company
1, Company 2, etc.) and works with the data of the selected company. In the background the right databases connections,
web services and other services for the selected environment will be used.

Actual projects use the CMS functionality to manage global Constants and set these constants every time on the engine when
a new version of the project will be deployed. Another solution for this problem is the usage of property files which will be
loaded by the application. If you use environments, the user only change the environment and all configuration settings of the
environment will be used (e.g. database, web service, etc.) once. The system switch the settings in the background.

Configuration

352

Editor
The environment editor is part of the Configuration Management. The basic handling of the configuration editor will be
described here. By using the add configuration function a new environment will be added. The name of the environment is
the name of the configuration.

Description of the environment

Provide a description of the environment. The description can also be used to describe some server IPs, specifics of the
infrastructure and other interesting stuff.

Note

Remove Environments If environment configurations are removed all environment values for global variables,
databases and web services will also be removed. If you environments removed from projects included in the
Library the values will also be removed in your project.

Warning

Rename Environments If environment configurations are renamed all configurations for global variables,
databases and web services will NOT be replaced by the new name. This will be supported in a future version.

Environment settings
After the environment is created you can now assign environment values for different project objects. The environment settings
for the project objects are done in their associated editors. Environment setting can be done for:

Global Variables Assign environment values to global variables

Databases Add environment connection properties to databases

Web Services Add environment connection properties to web services

Configuration

353

Change environment for Simulation

It is possible to change the environment for the Simulation by setting the Environment in the Preferences.

Change environment at runtime

It is possible to change the environment at runtime on Case, Session and Application Level. This is an essential feature in
order to fulfill the requirements of an multi-client capability application.

Scope How to set in IvyScript

Case Scope ivy.case.setActiveEnvironment(String name)

Session Scope ivy.session.setActiveEnvironment(String name)

Application Scope ivy.wf.getApplication().setActiveEnvironment(String name)

Note

The setActiveEnvironment(String name) methods throw a runtime exception if no environment
with the given name exist.

Important

How does the system check which environment is active?

The environment determination is a follows:

1. Environment that is set on the current case.

2. Environment that is set on the current session.

3. Environment that is set on the current application.

4. Default environment

Configuration

354

Global Variables
Global Variables acts as global constants which can be used in your application. Global Variables are simple Key/Value pairs
which can be specified by the developer. Some examples for global variables are:

• Company data (name, address, contacts)

• Simple Rule Values (e.g. credit account)

• Path values for saving files

• Path values for 3rd party systems and some other variables

Editor

The global variable editor is part of the Configuration Management. See Configuration Editor for more information. A global
variable can be added by using the add configuration function. The name of the global variable is the name of the configuration.

Default value

Provide a default value of the global variable. This can be a Number or a String. This value will be used if you access the
global variable in the application.

Description

Provide a description of the global variable.

Environment settings

In this section the default value of the global variable can be overridden/new assigned for the specific Environment.

Configuration

355

How does it works at Runtime

If you work with environments at runtime, the system looks for an environment value of the global variable. If no
environment value was found for the global variable, the default value will be used. Note that it is not necessary to
assign global variable values for every environment. If a global variable has always the same value for all environments,
only the default value should be set.

Access global variables in IvyScript

In order the access the Global Variables in your code a new environment variable var was introduced in IvyScript which
provides a comfortable access to your defined variables. This approach has the advantage that, if global variables are removed
developers will immediately informed in which process element the variable was used.

Database Configuration
This chapter deals with the database configuration. To use databases in your business or User Dialog processes you need to
define some database configurations first. After you have configured the databases (data sources) you can use them in your
process steps. The process steps references only the database configuration ids. So you can use different database configuration
settings on your productive server.

Database Configuration Editor

Overview

The Axon.ivy database configuration editor lets you configure the databases you use in your project and the extending projects.

Configuration

356

Figure 8.2. The Database Configuration Editor

New Add a new database configuration

Add environment Add an environment configuration for the selected database. Select one or more environments for
the environment list. For new environment configurations the standard configuration is taken. Please
note, existing environment configurations will be overridden, if you add an environment twice.

Remove Remove the selected database configuration

Test Connection Test database connection. A dialog shows the result status if the database can be connected or not.
In the case of a failure the reason will be displayed

SQL Opens a SQL editor in order to set up SQL Statements. The SQL Editor displays the result in a result
table

Configuration

357

Accessibility
Axon.ivy Project Tree > double click on the Persistence label.

Environments
In the configuration editor you can define different Environments. The environments can be added to existing database
configurations. For example it is possible to define a Database for your development, test and production environment.
Depending on the Active Environment the associated environment configuration will used. If no environment configuration
for a database is available, the default configuration will be used.

If a new database configuration is added to the container, the system automatically adds empty environment database
configurations for each environment found in the project.

Note

The root database acts as the default configuration and must always be set

Tip

You don't must define environment configurations for every database. If the database configuration is the same
for all environments, only the default configuration is necessary.

Features
All Database Configurations A list of all database configurations defined in this project. A red or green icon indicates

the result of the automatically executed connection test.

Database Connection Configuration Shows the state of the automatically executed connection test.

Database Select the type and driver of the database you
use. Some often used and tested drivers are
shipped with the Designer. Additional drivers
can be added by copying its JDBC driver Jar
into the jre/lib/ext folder of your Axon.ivy
installation.

The field max. connections lets you
specify the number of concurrent connections to
your database.

Connection Properties Specify the properties for the connection to your
database.

Additional Connection Properties If your database needs more information you
can use this section to define the additional
properties.

REST Clients Configuration
The REST Clients configuration contains the definition of all REST services, which can be consumed from a BPM process.

Configuration

358

REST Client
A REST Client can be referenced by its name or by its universal unique identifier (uuid). The uuid is generated when a new
REST Client is created and will never change. The name of a REST Client is given when a new REST Client is created.
It can be changed later. By referencing a REST Client by its uuid ensures that renaming of the REST Client will not break
the reference.

Further information about how to use the REST Clients can be found in the chapter “Call a remote REST Service”.

Like other configurations a REST Client can be configured differently per environment.

REST Client Editor
The REST Client Editor allows to configure REST Client default and environments configurations.

REST Clients Tree Editor

Shows the REST Clients and its environment configurations.

Add Client Adds a new REST Client.

Add Environment Adds a new environment configuration for the selected REST Client.

Remove Removes the selected environment or REST Client configuration.

REST Client Details Editor

Shows the currently selected REST Client or environment configuration.

Configuration

359

REST Client Section

UUID Universal unique identifier of the REST Client. The REST Client can be referenced by this uuid. Cannot
be modified.

Name The name of the REST Client. The REST Client can be referenced by this name. Can be modified. Note
that references using the name will break if you change it.

Description Description of the REST Client.

Uri The base URI under which the remote service publishes its resources (e.g. https://api.twitter.com/1.1).

The URI can contain template placeholders which are resolved later by the client user (e.g. https://
api.twitter.com/{version}).

ivy.rest.client("twitter").resolveTemplate("version", "1.1").get()

Tip

To consume a REST service running in the same Axon.ivy Engine / Application as the client
a set of Axon.ivy placeholders can be used. These placeholders are automatically resolved:
{ivy.engine.host}, {ivy.engine.http.port}, {ivy.engine.context}, {ivy.request.application}.

E.g. http://{ivy.engine.host}:}{ivy.engine.http.port}/
{ivy.engine.context}/api/{ivy.request.application}/my/service

Authentication Section

HTTP Basic Adds support for HTTP Basic authentication.

HTTP Digest Adds support for HTTP Digest authentication.

NTLM Adds support for NTLM authentication. Optionally, the NTLM.domain and the NTLM.workstation
can be configured in the properties section.

Username The name of the user used to authenticate the client.

Password The password of the user used to authenticate the client.

Features Section

JSON Adds a feature so that responses in JSON are mapped to Java Objects and Java Objects in requests are
mapped to JSON.

Features List Shows the configured "features" classes. The classes configured here are registered in the WebTarget
using the method register(Class). The classes needs to implement a JAX-RS contract interface
and must have a default constructor.

Add Adds a new feature class.

Remove Removes the selected feature.

Properties Section

Properties Table Properties can customize the settings of the REST Client or one of its features.

Client properties

Well known properties of the client are documented here:
org.glassfish.jersey.client.ClientProperties.

https://jersey.github.io/apidocs/latest/jersey/org/glassfish/jersey/client/ClientProperties.html

Configuration

360

In order to configure SSL client authentication for a REST Client call, you need to specify the
property SSL.keyAlias. The value of this alias needs to correspond with a key alias available in the
client keystore configured under SSL Client Settings.

JSON properties

The JSON feature knows many properties that customize the serialization from JSON to Java
objects and vice versa.

It is for instance possible to read a very complex JSON object with many fields back to a Java
object that contains only a subset of these fields. To allow this incomplete but efficient mapping the
property Deserialization.FAIL_ON_UNKNOWN_PROPERTIES must be set to false.

Consult the Jackson documentation for a list of all configurable items:

• Jackson Deserialization features can be set using Deserialization. as prefix. E.g.
Deserialization.FAIL_ON_UNKNOWN_PROPERTIES

• Jackson Serialization features can be set using Serialization. as prefix. E.g.
Serialization.WRITE_ENUMS_USING_INDEX

Add Adds a new property.

Add Password Adds a new password property. The value of a password property is not visible in the table and is
stored encrypted in the configuration file.

Remove Removes the selected property.

Web Service Clients Editor
This chapter describes how web service configurations are organized.

https://github.com/FasterXML/jackson-databind/wiki/Deserialization-Features
https://github.com/FasterXML/jackson-databind/wiki/Serialization-features

Configuration

361

Figure 8.3. Web Service Clients Editor

Client Tree

Web service configurations are displayed in a tree hierarchy. The tree editor helps to add and delete existing tree elements
(web service groups, web service configurations and web service environment configurations).

In the editor the groups are symbolized with a folder icon. The web service configuration elements are symbolized with a
globe icon. On the right side there are buttons offer following functions:

Add Client Adds a new web service client configuration.

Add Environment Adds an environment configuration to the selected web service configuration. Select one or more
environments from the environment list.

Configuration

362

Add Group Adds a new web service group. These can be used to structuring your services tree.

Remove Remove the current selection.

Warning

Entries you want to erase might still be in use. Check all dependencies before removing
elements from the tree.

Client Details Editor

Details of currently selected web service configuration node are displayed on the right hand side. In this editor details of an
tree element (web service group, web service configuration or web service environment configuration) can be changed.

Web Service Client Section

The following attributes are available in the Web Service Section:

Name The name attribute specifies the displayed name of a web service configuration. The name is
not used as identifier, so it can be changed at any time.

Description Description of the web service. This field is for documentation purposes only.

WSDL URL Service details and classes will be generated using the WSDL specified here. Please use
protocol prefix like:

http://myserver.ch/hello.wsdl

file://c:\temp\myWis.wsdl

Library The library that is used to generate the web service client classes. Unless you have some special
reasons to use the older Axis framework, please select Apache CXF. Note that you have to
regenerate the web service client classes if you change this setting.

Generate WS classes After specifying the mandatory fields WSDL URL and Library you can click the Generate WS
classes button to read the WSDL and generate client side classes. The generated files will be
compiled and packaged into a jar file. The generated jar file will be located in the lib_ws/client
folder of ivy project and automatically added to the project libraries.

Configuration

363

Note

When you change the WSDL URL, the WSDL itself or the Library setting you
always have to re-generate the service classes.

Authentication Section

Configures the authentication that is sent to the remote web service.

The following attributes are available in the Authentication section:

Type The authentication type to be used. The available authentication types depends on the selected library.

Username Name of the user used to authenticate the client. Will be stored as a property.

Password Password of the user used to authenticate the client. Will be stored as a property.

Tip

Authentication properties like (username and password) can be overridden in the “Web Service Call
Activity” that performs the call to the remote service. On these activities authentication properties can contain
scripted/dynamic values.

Features Section

Features add optional functionality to a web service client call execution.

Add Adds a new feature class to the list. All specified feature classes
must implement the JAX-WS standard class javax.xml.ws.WebServiceFeature or
ch.ivyteam.ivy.webservice.exec.feature.WebServiceClientFeature.

Remove Removes the selected feature class from the list.

Properties Section

Properties configure the web service client and its features. Some well known properties are documented here:
javax.xml.ws.BindingProvider

Add Adds a new property.

Add Password Adds a new password property. The value of a password property is not visible in the table and is stored
encrypted in the configuration file.

Remove Removes the selected property.

https://docs.oracle.com/javase/9/docs/api/javax/xml/ws/WebServiceFeature.html
https://docs.oracle.com/javase/9/docs/api/javax/xml/ws/BindingProvider.html

Configuration

364

Tip

In order to configure SSL client authentication for a Web Service, you need to specify the property SSL.keyAlias.
The value of this alias needs to correspond with a key alias available in the client keystore configured under
SSL Client Settings.

Endpoint URI Section

The following attributes are available in the Ports section:

Ports The list of ports is available after web service client classes generation. (see: Generate WS classes). The
content of this list originates from the specified WSDL and is filled with information from the client
framework.

Default URI The URI where the current web service is located. The initial URI is derived from the WSDL. But one
can override this setting if the address has changed. It can also be overridden per environment. For
instance to route calls during development to test instance of the service.

Fallback URIs An optional list of URIs. They are used as fallback URI if any error happens during the web service
request. The default endpoint will be called first, then the fallback URI in the appearing order. Servers
on the list are queried one by one until a successful web service access can be made. You find error
messages in the runtime log when endpoint invocations fail. If a service invocation is successful then
the process continues as normal.

This list is optional. If this list is empty and no default URI is specified then an exception is raised
during the call and the process continues with error handling.

Environments
In the configuration editor you can define different Environments. Special setups can be defined this way for different
environments web services are running in, e.g. production, test or development environments. This is the place where
traditionally alternative authentication methods and endpoint URIs are configured for other execution environments.

Environments can be added to existing web service configurations. Depending on the active environment the associated
environment configuration will used. The default configuration will be used if no or no matching environment configuration
is specified for the web service.

Note

The web service configuration acts as the default configuration and must be set

Tip

You don't need to define environment configurations for every web service. If the web service configuration is
the same for all environments, only a default configuration is necessary.

Roles and Users
Role is a widely used term in the computer industry and means a group of users of a certain system which share a common
property. This enables an administrator to define configurations for this groups (roles) of users at once instead of defining it
for each and every user individually. Axon.ivy incorporates a sophisticated role and user model to support:

Configuration

365

• Authentication - Who may login into Axon.ivy

• Authorization - Control who is allowed to do what

• Task assignment - Decide who has to perform a task in a workflow

• User dependent UI elements - Configure who can see and operate on UI elements

In the following two sections you will learn how to create, edit and remove roles and users and how to link users with roles
and vice versa.

Role Concept

The hierarchy of the roles is built upon the principle of specialization. Each child role specialises its parent role(s) meaning
that a role Team A always implicitly contains its parent roles. The role Everybody is the root for all roles, all roles specialize
this role. For example in the figure below, a member user of role Team A also has the roles Development and Everybody.

Member Role

A Member Role can be added as a child of an existing Role and links to another existing Role. While resolving the role tree,
to collect the specializations of each role, the Member Role is handled like a normal child Role. Basically this simplifies the
configuration and administration of roles.

Tip

The concept with Member Roles allows to create a sub-tree of roles with 'company roles' and a sub-tree of
roles with 'permission roles'. The sub-tree of 'company roles' represents typically the structure of the company.
The sub-tree of 'permission roles' represents the use or execution permission of a specific part or feature of an
application. With a Member Role it is possible to assign a permission to a 'company role' by linking the 'company
role' as a member role of a specific 'permission role'.

The following configuration illustration that users of group First Level and Team B have the permission for
Process N and users of both support groups and of the Support Group itself has the permission for Process M.

+ Everybody
 + Support Group
 + First Level
 + Second Level
 + Development
 + Team A
 + Team B

 + Application Permissions
 + Process M
 - First Level (Member Role linked to role 'First Level')
 - Team B (Member Role)
 + Process N
 - Support Group (Member Role linked to role 'Support Group')

Role Editor

The role editor allows to create a new role and to edit and/or to remove existing roles and to structure them into a hierarchy.
It can be started by double clicking on the Roles node in the Axon.ivy Projects view.

Configuration

366

Figure 8.4. The Role Editor

The left side of the Role editor consists of a tree showing all the roles in a hierarchy order. A click on one of the roles will
show the properties for the selected role on the right side of the editor. The role hierarchy can be manipulated by dragging
a role and dropping it at the new place in the hierarchy.

New

A new role is created as a child of the selected role.

Add

A role is added as a linked member role to the selected role.

Remove

The selected role and all its children roles are removed. The user is obliged to confirm the removal. Note that the role
Everybody may not be deleted.

Import XML

A .roleconfig file from another project can be imported for convenience reasons.

Export XML

All roles are exported in a XML file with the extension .roleconfig to easily re-use the role hierarchy.

Sort

The selected roles are sorted alphabetically, if desired this is performed recursively on the children.

Warning

Roles created in the designer are uploaded to the Axon.ivy Engine not until the deployment of the project. They
are merged with all other roles in the same application context. Consider that the deployment will fail if the same
role exist in more than one project in different role hierarchies.

Test User Editor
Process designers can create, edit and remove test users in the user editor. Users need a password in order to authenticate
themselves and they need to be assigned to at least on role. The editor can be started by double clicking on the Test Users
node in the Axon.ivy Projects view.

Configuration

367

Note

Test users are only used in the process simulation within the Axon.ivy Designer and they are not uploaded
to the engine at the deployment. Users for deployed processes on the Axon.ivy Engine need to be created and
configured on the engine.

Figure 8.5. The User editor

The left side of the editor you see all users with their user names (i.e. login name) and their full names. On the right side the
specific properties for the selected user on the left side is displayed. A user can be assigned to several roles and he is implicitly
assigned to the parent roles of the roles, he explicitly is assigned to (see Role Editor for more precise details). Additional
properties can be added to each user in terms of string key-value pairs and be reused within process steps in IvyScript.

New

Creates a new user with the specified name.

Remove

Removes a user from the list. The process designer is obliged to confirm the removal

Sort

Sorts the user list in alphabetical order

Import

A .userconfig file from another project can be imported for convenience reasons

Export XML

All users and their corresponding properties are exported in a XML file with the extension .userconfig to easily re-use the
users in another project.

Configuration

368

Tip

You do not see the user called Developer, because it is a built in user, that belongs to each groups, and owns all
rights. The user is meant to be used for testing, so that it exists only in the Designer. The password of this user
is Developer (in case you would like to log in using IvyScript)

Configuration files
This chapter deals with configuration files of the Axon.ivy Designer

Introduction
Configuration files are located in the configuration folder under the %AXON_IVY_INSTALLATION% folder. These files you
have to edit out of Axon.ivy, e.g. using a system editor. It is recommended to stop your designer before you start changing
these configurations.

There are some configuration files with extension *.xml. These are normal XML files. Meanwhile the *.any files are so called
any files. There are a couple of any implementations - so that there is no real standard. The intension behind this is to have
an easily to understand configuration with simple structure, and practically unlimited parameter types.

Tip

It is recommended to make a backup copy before you start changing configurations.

log4jconfig.xml
Using this file you can change logging preferences. This files contains a Log4j configuration. Log4j is an open source
framework for logging. You can change logging format, logging destination (file, console, etc.), logging level and control
which packages should be logged on which level.

Tip

The official web page of Log4j is http://logging.apache.org/log4j/ Meanwhile all around the Internet you can
find many articles and documentations.

jnlpconfig.any
Using this file you can change properties of the JNLP file that will be sent to client computers to start an Axon.ivy Rich
Internet Application.

jnlpconfig.any is devided into tree sections: information, java and application-desc

information Configure general information about the application like title or its vendor.

java Configure parameters used for the Java virtual machine on client side like memory parameters, additional jvm
arguments and the download-mode of jars.

application-desc Configure technical attributes of the application like client-site logging, tooltip behavior or the rich
dialog session timeout.

Tip

Have a look into the file jnlpconfig.any. The configuration options are described in detail there.

Note

By default, the lazy download of jars is set to false. This means, that all jars requred by the application are
downloaded at startup. With a good internet connection, this will not be a problem. The application will start

Configuration

369

quite fast. In case the client is connected by a slow internet connection, it makes sense to enable lazy download
of jars. But if lazy download is enabled, it will cause an overhead in the security certifacte validiation - each jar
will be verified individually. This also takes a cerain amount of time.

ulclogconfig.any
Using this file you can change server side logging properties for ULC components. You can configure log level and log file.
Sub-configurations can be defined per process model that receives the first request. If no log-file is defined, then System.err
will be used as output of JNLP file that will be sent to client computers to start Axon.ivy application.

370

Chapter 9. Concepts

Adaptive Case Management
Classic BPM processes have a clear flow that defines how the process is executed. Within these strict processes the involved
user has limited possibilities to improve the process while executing. Optimizations and flow changes often require a long
modeling and re-deployment round-trip. Furthermore the process could get cryptic because every rarely occurring special
case has to be modeled. Therefore, the process does no longer clearly show the most relevant business paths. Welcome to
the world of spaghetti BPM.

Today the user has the need to adapt the process flow during execution. Optional side tasks are required in addition to the
normal process flow or a set of tasks must be skipped because of a special condition. This brings back the power to the
user which has often more knowledge about the domain and the current context of the process. For instance an important
information could be received from a phone call, but the workflow system has no knowledge about this analog information.

Adaptive implementation

Invoking optional processes

Think about a process where the purchase of an asset must be approved by a line manager. The line manager may want to
ask the requester to provide more details why the asset is required. Therefore he'd add a side task to ask the requester for
clarification. This optional interaction should not be wired into the main approval process as it obfuscates the most used
business path. But it could be available as an optional side task that the line manager can start and then gets executed within
the current process context.

In Axon.ivy processes with side tasks can be invoked through Triggers or Signals.

Triggers

It is possible to trigger a strictly defined process. Strictly defined means that the calling process knows the target process as
it has to be implemented in the same or a required project. RequestStart events can be declared as trigger-able. While the
Trigger activity is used to actually trigger such a start.

So in the request verification front end, a manager could simply trigger the process to enrich the request with a trigger call
activity.

Signals

Most of the time you'd prefer a looser coupling between processes. This could be accomplished with Signals. A process that
wants to integrate other processes simply fires a signal when a certain state within the process is reached. Multiple other
processes in the same application could listen to this signal and all of them will be executed as soon as the signal is fired. A
dependency between the firing and listening processes is not required.

As example think of an employee that starts to work in a company. When the employee is registered from HR, other
processes can setup the environment for this employee. An IT responsible will setup a new desktop workstation while an

Concepts

371

office administrator will get the personal keys for the employee. To do this tasks in parallel and loosely coupled signals are
the first choice. The IT- and the office-process could listen to employee entry signals fired by the HR process.

Keeping loosely coupled processes in same context

A real world agile process execution can touch many different processes. But still the history and the context must be clear
for anyone who is involved in a task. So the workflow needs to know whether an invoked process belongs to the invoking
case. Or if the invoked process belongs to a completely new case.

The entity that can glue multiple process cases together is the Business Case. All cases and tasks that belong to the same
Business Case are presented to the user of a workflow screen as related cases. Therefore, triggerable- and signalable-process
start must define whether they belong to the same Business Case as the invoking process case. This can be done with a simple
configuration on these starts. See the SignalStart and TriggerStart inscription for details.

You can also use the Public API to attach the current case to an existing Business Case.

if (in.departement.equals("HR")) // evaluate attachment by runtime conditions
{
 ivy.case.attachToBusinessCase(in.callerCaseId)
}

For workflow front end developers there exists API to list all tasks or cases of a Business Case. So showing the
involved cases and tasks to a workflow user is a simple implementation. For more details see the Public API of
ch.ivyteam.ivy.workflow.businesscase.IBusinessCase.

ivy.case.getBusinessCase().getActiveTasks(); // get involved tasks that are active
ivy.case.getBusinessCase().getTasks(); // get all involved tasks

Concepts

372

Aborting tasks

A long running process could get into the situation that there are many open tasks that have to be done by human users.
But eventually the environment of the case changes and it does no longer make any sense to accomplish the open tasks. For
instance think about a car leasing process. If the customer decides shortly before contract signing that he requires leather seats
instead of the furnished ones, the car will get more expensive. So the whole credit assessment process has to run again and
open tasks become obsolete.

A UserTask can support abortion by listening to a signal. The UserTask activity can subscribe to an abortion signal by adding
a Signal Boundary Event on it. When the signal, that the credit amount of the car changed, is fired from another process
the listening UserTask will be aborted. And the process continues at the Signal Boundary Event. Classically after the Signal
Boundary a clean up process follows.

Share data between processes

Often an initial larger process starts by gathering data that is later processed and enriched. This data is typically business
relevant domain data that can be recognized by domain experts that contribute to the process. Think of bank employee that
grants credits. The data for his processes could look like this when simplified:

Figure 9.1. Data class of a credit request

To store this kind of data Axon.ivy provides a simple repository that is called Business Data. This stored data can then be
accessed by multiple processes instances during the lifetime of a long living complex process. The repository provides access
to the data with simple store and load functions similar to well known other repositories such as the EntityManager from
JPA. But in comparison to JPA and similar technologies this repository can be used without any database or environment
configuration.

CreditRequest creditRequest = ivy.repo.find(in.businessDataId, CreditRequest.class); // load a CreditRequest from the Business Data Repo
creditRequest.amount = 30000; // modify a field
ivy.repo.save(creditRequest); // save the modified CreditRequest back to the Repo.

By annotating a data class with the @BusinessCaseData annotation, all values of the annotated data class are automatically
associated with the context of the current Business Case. The data is then shared and accessible from all processes belonging
to the Business Case. Multiple data classes of different types can be used inside a Business Case.

Concepts

373

Business Data analytics

Running business processes typically generate highly valuable data, that could influence critical business decisions. Based on
the stored data you will typically want to visualize KPIs on a management dashboard. In our credit sample, you may want
to visualize the aggregated sum of all open credits. The data in the Business Data repository is stored in form that is easily
accessible and explorable with a tool like Kibana.

Figure 9.2. Kibana visualizing the total of the requested credit volume

https://www.elastic.co/products/kibana

Concepts

374

Regaining the big picture

Real world BPM projects have shown that big processes tend to get increasingly complex and need to be split up into huge
process landscapes, which leads to an intransparent main process flow. Users of the process often do not see how their work
contributes to the bigger business process and therefore great opportunities for improvements are not taken. There is also a
big need for a unique view of adaptive case operations that can be used by process contributors. Like an overview of optional
tasks that a clerk can start at any time.

The Case Map addresses the needs for flexible and agile Business Cases by providing a clear and simple view on the main
process and its execution. With the Case Map you can easily orchestrate the main flow of processes and the business can
identify and track the stages where a running process instance is.

Figure 9.3. Case Map of a credit lending process

A Case Map is divided into stages (in the sample above the stages are: Identification, Credit rating and Approval). Each stage
defines a certain phase in the life cycle of a business process. A stage consists of processes (e.g. "Collect personal data"). The
default flow or also known as happy path is from left to right and from top to bottom. If the last process of a stage has finished
the flow continues on the stage to the right of the current stage. Stages typically have a name and icon. The idea is to reuse
this icons in Workflow UIs and processes to give the end user a hint in which stage the current Business Case is.

Concepts

375

Figure 9.4. Actual stage of a Business Case displayed in the portal

Besides processes a stage of a Case Map can contain Sidesteps (e.g. "External solvency service" in the Case Map above).
Sidesteps can be started manually by the workflow user during the ongoing Business Case. A typical Sidestep could be a
process which aborts the business process (e.g. abort request). The use of Sidesteps can reduce the time spent on technical
round trips, for modeling rare and costly edge cases.

Figure 9.5. A Sidestep "External solvency service" which can be started in the portal

The dependencies between Case Map, Business Cases and Business Data are as follows: Processes started inside a Case Map
create new cases inside the Business Case, which themselves contain tasks for the users. Data between processes can be easily
shared using Business Data. A Business Case can be attached to a Case Map, which in turn controls the flow of the processes.

Concepts

376

Figure 9.6. The relationship between Business Case, Business Data and Case Map.

Conclusion

To reiterate: signals and triggers can be used to loosely respectively tightly couple different processes. The innovative Case
Map brings order in to chaos of spaghetti BPM. A domain expert always has a simple graphical view on the Business Case
where he contributes to. The Case Map empowers the domain expert to steer the process execution by starting optional
Sidesteps or gracefully skipping large parts of the pre-modeled standard flow.

The Case Map gives the developer and the user a common language to talk about a complex process landscape. The Case
Map can be read and understood by anyone that contributes to the process without an introduction. This brings back the old
BPM ideas that stood the test of time.

Signal Reference
Signals inform an unknown number of recipients of a specific event that has happened. Signals are sent application-wide
without the need for project dependency between the sender and receiver.

Sending Signals

A Signal can be sent programmatically and consists of a Signal Code and optional signal data.

Note

Signal codes are defined as strings. Only letters and numbers [A-Za-z0-9] as well as the colon : as separator,
are allowed characters for a Signal Code.

Valid: hr:employee:quit, flight:cancel:no:LXL398

Send a Signal programmatically

A signal with a custom signal code can be sent using the following IvyScript code:

import ch.ivyteam.ivy.process.model.value.SignalCode;

// send simple signal
ivy.wf.signals().send("datarepository:updated");

// send signal with reference
ivy.wf.signals().send("order:canceled:"+in.order.id);

// send signal with signal data
ivy.wf.signals().send(new SignalCode("user:created"), in.employee.name);

Concepts

377

Tip

It is not recommended to use data classes as signal data as not all receiving projects might have access to these
data classes. Better send an id which references an object in a database or send payload data that is encoded
as string (e.g. JSON).

Send a Signal manually in the Designer

While developing a process it is possible to send a Signal manually in the 'Signals' page of the Designer Workflow UI.

Receiving Signals

Signals can be received by Signal Boundary Events and Signal Start Events. Inscribed signal patterns can contain wildcards
(*). Signal Boundary Events can react to a signal pattern containing macros.

Signal Boundary Event

A “Signal Boundary Event” attached to a User Task Element destroys the task if a matching signal is received and the task
is in SUSPENDED state (see also “Signal Boundary Event” in the Workflow chapter). The inscribed pattern on the Signal
Boundary Event defines the filter for awaited signals codes:

Listening for a cancelled order signal with a specific id defined as macro:

order:canceled:<%=in.orderNr%>

Listening to any user created signals:

user:created:*

Signal Start Event

With a “Signal Start” a new process is started if a matching signal code is received.

Tracing Signals

Signals can be traced by either using the Designer Workflow UI or the JSF Workflow UI both Workflow UIs make use of
the Public API for Signals (ivy.wf.signals()).

Tip

For debugging the signal data of a Signal event you can set a breakpoint on a Signal Start or Signal Boundary
Event and inspect the signal variable in the 'Variables' view.

Concepts

378

Workflow

Case and Task
The ivy workflow manages the execution of process instances. A process instance is represented trough one Case and one
or multiple Tasks. The Case exists from the first process step until the last process step and holds information of a process
instance. When the Case gets finished even the process gets finished and backwards. A Case is processed though Tasks. Each
Task defines an unit of work, which has to be done as one working step. Therefore a Task is assigned to a user or role which
executes Task. A Task starts by a process-start element or a task-switch element and ends by the next task-switch element
or an process-end element.

Business Case
Modern processes are loosely coupled and highly adaptive. Business processes can break out of the standard process flow and
trigger asynchronous processes or send a signal that starts various other processes. As every running process creates a new
Case instance it can get difficult for the workflow users to track the history and context of a task.

To clarify the workflow view, multiple Cases can be attached to a single Business Case. Triggered or signaled process-starts
define in their inscription whether the started Case should be attached to the Business Case of the calling Case. Moreover,
any Case can be attached to a Business Case by API. If a case map is started a business case is automatically created. See
Workflow execution of Case Map Processes

Lifecycle

The first case of a process always acts as Business Case (Figure 9.7, “Initial Case”). If later an additional process case is
attached to this initial case, this first initial case will be copied and treated as Business Case ((Figure 9.8, “Multiple Cases”)).

Figure 9.7. Initial Case

Concepts

379

Figure 9.8. Multiple Cases

Case and Task Categories
A Case or a Task can be assigned to a category. A category is a structured String (e.g. Finance/Invoices) and categorize
them into a hierarchical structure. It is beside the name of a Task (or Case) an important identification attribute of a Case
or Task.

The Category API allows to get localized information from the CMS. E.g. the name of the category Finance/Invoices
is stored in the CMS at /Categories/Finance/Invoices/name.

The following example shows a simple usage of a category on Case level. The API on Task level is identical.

ivy.case.setCategoryPath("Finance/Invoices");

String categoryName = ivy.case.getCategory().getName(); // EN: "Invoices", DE: "Rechnungen"
String categoryPath = ivy.case.getCategory().getPath(); // EN: "Finance/Invoices", DE: "Finanzen/Rechnungen"

Tip

The project WorkflowDemos demonstrates the usage of case and task categorisation. Typically the case category
is used to categorize the over-all process (i.e. Business Case) and the task category is used to categorize a single
or set of unions of work. Because the clear separation of case and task categorization even complex use cases
could be handled.

E.g. in a midsized company the process to request an address from a customer change exists in multiple forms.
There is one in the customer portal and one for partner agencies. The process executed from the customer
portal has the case category 'CustomerPortal/AddressChange'. The process executed by a partner agency has the
case category 'Partner/Customers/AddressChange'. Both processes has involved a task to validate the address.
Finally the address verification is done by the same department/user. So this task has in both cases the category
'AddressVerification'. This allows the user to filter those tasks no matter where they where created.

Workflow API
There are several APIs to manipulate and query workflow tasks and cases.

Task and Case queries

The fluent workflow query API makes queries against all existing tasks and cases possible. The queries can be written in a
SQL like manor.

Concepts

380

import ch.ivyteam.ivy.workflow.query.TaskQuery;
import ch.ivyteam.ivy.workflow.ITask;

// create a new query
TaskQuery query = TaskQuery.create()
 .aggregate().avgCustomDecimalField1()
 .where().customVarCharField1().isEqual("ivy")
 .groupBy().state()
 .orderBy().customVarCharField2().descending();
// resolve query results
List<ITask> tasks = ivy.wf.getTaskQueryExecutor().getResults(query);

To resolve all tasks that the current user can work on use the following code:

TaskQuery query = TaskQuery.create()
 .where().currentUserCanWorkOn()
 .orderBy().priority();
List<ITask> userWorkTasks = ivy.wf.getTaskQueryExecutor().getResults(query);

To execute a query an instance of a IQueryExecutor is needed. It can be retrieved trough the ivy environment variable.

// Application specific query executors can be retrieved from the application context
ivy.wf.getTaskQueryExecutor().getResults(taskQuery);
ivy.wf.getCaseQueryExecutor().getResults(caseQuery);

Warning

Queries over all applications can be executed on the global workflow context. But queries that involve the current
session could deliver useless results as users are not shared over multiple applications.

ivy.wf.getGlobalContext().getTaskQueryExecutor().getResults(taskQuery);
ivy.wf.getGlobalContext().getCaseQueryExecutor().getResults(caseQuery);

Task and Case manipulation

The API to manipulate tasks and cases is available trough the ivy environment variable.

• ivy.case (ICase): represents the current process under execution

• ivy.task (ITask): represents the user's current work unit in the process under execution.

• ivy.wf (IWorkflowContext): addresses all workflow tasks and cases of all users for the application under execution.

• ivy.session (IWorkflowSession): gives access to all workflow tasks and cases of the current user.

REST API

There is a REST API available that uses HTTP, JSON (application/json) as content type and HTTP basic as authentication
method. Over this interface the following services are available:

HTTP GET /ivy/api/{application
name}/workflow/processstarts

Returns all process starts that can be started by the authenticated user.

HTTP GET /ivy/api/{application
name}/workflow/task/{taskId}

Returns the task with the given task identifier.

HTTP GET /ivy/api/{application
name}/workflow/tasks

Returns the tasks the authenticated user can work on.

Concepts

381

HTTP GET /ivy/api/{application
name}/workflow/tasks/count

Returns the number of tasks the authenticated user can work on.

HTTP GET /ivy/api/{application
name}/engine/info

Returns the version and the name of the engine

Workflow States
During a process execution the corresponding case and tasks have various states. Normally, a case is started non persistent.
This means it is stored in memory only. As soon as the process hits a task switch the case and its tasks will be made persistent
by storing them to the system database. Only persistent cases and tasks can be resolved with the query API's above.

Process without Task switch

Process start Process end

Case state CREATED DONE

Task state CREATED DONE

Persistent NO NO

Table 9.1. Process without Task switch

Process with session timeout

Process start User Dialog

Case state CREATED ZOMBIE

Task state CREATED ZOMBIE

Persistent NO NO

Table 9.2. Process with User Dialog that reaches a session timeout

Process with Task switch

Concepts

382

Process start Task switch Process end

Case state CREATED RUNNING DONE

Task state (Task 1) CREATED DONE

Task state (Task 2) SUSPENDED DONE

Persistent NO YES YES

Table 9.3. Process with Task switch

Task switch states in detail

In detail the tasks are going to more technical task states inside of a task switch element. After a task reaches a task switch
it is in state READY_FOR_JOIN. As soon as all input tasks have arrived at the task switch the state of all input tasks are
switched to JOINING and the process data of the tasks are joined to one process data that is used as start data for the output
tasks. After joining the input tasks are in state DONE and the output tasks are created in state SUSPENDED.

Before Task
switch

Task switch
(reached)

Task switch
(entry)

Task switch (done/
output)

After Task switch

Case state CREATED/
RUNNING

RUNNING

Task state (Task 1) CREATED/
RESUMED

READY_FOR_JOINJOINING DONE -

Task state (Task 2) - - - SUSPENDED RESUMED

Persistent NO/YES YES

Table 9.4. Process with Task switch

Task with session timeout

If a user resumes a task with an user dialog and then the session of the user timeouts then the task state is set back to state
SUSPENDED and the process of the task is set back to the task switch element.

Task switch User Dialog Task switch (after session
timeout)

Case state RUNNING RUNNING RUNNING

Concepts

383

Task switch User Dialog Task switch (after session
timeout)

Task state (Task 1) SUSPENDED RESUMED SUSPENDED

Persistent YES YES YES

Table 9.5. Task with session timeout

User Task

A User Task is the combination of a Task Switch Event and a User Dialog. When the user start working on a normal Html
User Dialog the task changes its state to RESUMED. In case of an 'Offline Dialog' the task state is not changed before the
user submits the task form. Then the state changes from SUSPENDED to RESUMED. Subsequent steps are executed until
the task is finally DONE. See also “Offline Tasks”.

Signal Boundary Event

A User Task with an attached Signal Boundary Event is listening to a signal while its task is in SUSPENDED state. If the
signal has been received the task is destroyed and the execution continues with a newly created follow-up task.

Concepts

384

Other task states

There are more task states mainly for task synchronisation, error handing, intermediate events, or user aborts. To learn more
about task states see enumeration ch.ivyteam.ivy.workflow.TaskState in public API.

Offline Tasks
Offline tasks are designed for use on a mobile device without connection to the Axon.ivy Engine. Typically the task data
and the task forms are loaded during the synchronization with the Axon.ivy Engine and then handled locally by an app on a
mobile device (e.g. a smartphone or a tablet). When the form is completed, the mobile app will transfer the entered form data
to the server as soon as the connection to the workflow server is back again. In turn, this will resume the task and continue
the process execution.

Offline Task in a Process
An Offline Task is generated, when the process engine executes a User Task element whereon an Offline Dialog is configured.

The User Task element provides a different task handling than normal task switches do. On a User Task, when the form data
(the actual dialog page) is requested, the corresponding task remains in state suspended. The task state will be changed to
resumed when the form data is submitted. Compared to this, a normal Task must be resumed first and after that, an Html
Dialog element that follows in process flow, will return the form data.

Action User Task element Task Switch element followed by Html
Dialog element

Task picked up from task list • Task state remains unchanged.

• Dialog page from configured dialog is
returned.

• Task state changes to resumed.

• Process flow continues to Html Dialog
element. Dialog page from configured
dialog is returned.

Form data submitted • Task state changes to resumed.

• Form data is mapped to dialog data.

• Dialog is closed, dialog data is
mapped to process data.

• Process execution continues in
context of the workflow user that
submitted the form.

• Form data is mapped to dialog data.

• Dialog is closed, dialog data is
mapped to process data.

• Process execution continues in
context of the workflow user that
resumed the task.

Table 9.6. Comparison of the execution sequence

Tip

Offline Tasks can also be processed using a normal web browser as client. From a user's perspective they can
be processed almost like normal tasks.

Because of the different task handling of a User Task element, the session can be interrupted/terminated after the form data
was loaded. Then the form can be processed offline. After reestablishing the connection and creating a new session, the form
data can be submitted. This would not work with normal tasks, since they are reset, as soon as the corresponding session (the
one that resumed the task) expires.

Note

An offline aware application must manage the loading of the form data for required tasks, the presentation of the
forms to the user during offline stages and the submission of the form data when the connection to the engine
is established again. The ivy mobile app has full support for offline tasks.

Concepts

385

Warning

Because the processing of an Offline Task may happen in parallel by several users, the task assignment should be
set with caution. The form-submission of the first user will resume the task and continue the process. Subsequent
form-submissions - from any user - will not be processed but responded with an error message.

Process elements that follow a User Task element will be executed in the context of the same task. An error during the execution
of these elements will result as an error response to the form submission and the whole user task is set back to suspended.

Tip

Placing an Html Dialog element after an (Offline) User Task element is not a good idea, since it will not be
handled correctly by an app that submitted the offline form. Generally it's best practise to place a task switch
(Task Switch element of another User Task) as soon as possible after a User Task element.

Offline Dialogs
An Offline Dialog is a special kind of Html Dialog that warrants to be suitable for offline usage.

Ivy treats Offline Dialogs as separate view technology. Only when a User Task element is configured to use an Offline Dialog,
it will generate Offline Tasks. Otherwise, normal tasks will be generated. From a technical point of view, an Offline Dialog
is the same as a normal Html Dialog. They both are User Dialogs built on top of the JSF technology.

Even though there is no technical restriction - like a validation or similar - an Offline Dialog must omit any features that
requires an active server connection before form submission. So, not all JSF features can be used. It's in the responsibility of
the dialog developer to ensure the offline capability when developing an Offline Dialog.

Restrictions for the design of offline capable dialogs:

• The view should not rely on server side state e.g. session attributes, because it is executed solely on the client.

• The dialog data fields defined as persistent are held in the client view state. So, these fields, together with fields submitted
in the form, are available in the dialog logic (methods and events). All other data fields are only available in the start method
to initialize the dialog. Anywhere else in the dialog logic, they will be set to null.

• Owed to the offline capability, Ajax requests to the server are not possible. E.g. auto complete, lazy loading

• The entered data should be validated before form submission (client side validation). If only server side validation is
performed, the user will get a late feedback, expressed as synchronization error when switching from offline to online.

Note

The layout and the styling of an offline capable dialog should consider the client device where it will run. Most
probably it will be embedded in an mobile app on a device with a small touch-screen.

Tip

To avoid Ajax on form submission, a p:commandButton can be configured with the attribute ajax="false":

 <p:commandButton value="Proceed" actionListener="#{logic.close}" ajax="false" />

Geo Location
The mobile app sends the current position of the mobile device to the server. This information is then stored in a location
services that are available on the user that has worked with the mobile app and the tasks that have been worked on the mobile
app.

Get latest position of a task:

import ch.ivyteam.ivy.location.GeoPosition;

Concepts

386

GeoPosition taskPosition =
 ivy.task.locations().search().findLatest().getPosition();

Get latest position of a user:

import ch.ivyteam.ivy.location.GeoPosition;
GeoPosition userPosition =
 ivy.session.getSessionUser().locations().search().findLatest().getPosition();

The location service can also be used to store additional locations:

import ch.ivyteam.ivy.location.GeoPosition;
import ch.ivyteam.ivy.location.ILocation;
ivy.session.getSessionUser()
 .locations()
 .add(ILocation
 .create(GeoPosition.inDegrees(47.171573, 8.516835))
 .withType("User Home")
 .withNote("My Home is my Castle")
);

More information can be found in the Public API in the package ch.ivyteam.ivy.location. It defines the location service and
types to create, store and manipulate location information and geo-positions.

Data Storage
Axon.ivy provides multiple possibilities to manage and store project specific data. This chapter provides an overview of all
the possibilities with their advantages and disadvantages. Which one should be used depends from case to case.

Content Management
Stores static multi language content like labels, texts, titles, images.

More information can be found in the chapter Content Management.

Web Content Folder
Stores static web files (CSS, JavaScript, Images, JSF-Templates) used in HTML User Dialogs.

More information can be found in the chapter HTML content in the Web Content Folder.

Filesystem
Data can be stores in files. Access and management has to be implemented in the project itself.

HTML User Dialog Resources
Stores static web files (CSS, JavaScript, Images, etc.) that are only used in the HTML User Dialog.

Database
Stores and access data in an external database systems. An own database server is necessary and the database schema must
be managed outside of Axon.ivy.

More information can be found in the chapter Db Step.

Persistency (Java Persistence API)
Stores and access data in an external database systems. An own database server is necessary. The database schema can be
generated. JPA is a Java standard that is well documented and widely used.

../PublicAPI/index.html
../PublicAPI/ch/ivyteam/ivy/location/package-summary.html

Concepts

387

More information can be found in the chapter Persistence.

Web Service
Stores and access data in external systems by using web services.

More information can be found in the chapter Web Service Call Step.

Global Variables
Stores simple name/value configuration pairs. A global variable can have a different value per environment. On the engine
there is a UI to change the values of a global variable.

More information can be found in the chapter Global Variables.

Application Custom Properties
Stores simple name/value pairs. Good alternative for storing small amount of data instead using a database.

More information can be found in the Public API ICustomProperties.

User Properties
Stores simple name/value pairs per user. Can be used to store user settings.

More information can be found in the Public API IUser.

Rich Dialog User Context
Stores UI settings per Rich Dialog and user. E.g. store the last choosen entry of a combo box to preselect it when the dialog
is opened again.

More information can be found in the chapter Rich Dialog User Context.

Summary
Concept Overriding Project

Dependencies
EnvironmentsPublic API Web

Accessable
Designer UI Engine UI Knowledge

Content
Management

yes yes no yes (yes) yes no Novice

Web
Content
Folder

no yes no no yes yes no Novice

Filesystem no no no no no no no Advanced

Html User
Dialog
Resources

no no no no yes yes no Novice

Database no yes yes no no yes no Advanced

Web Service no yes yes no no yes no Advanced

Persistency no yes yes yes no yes no Expert

Global
Variables

no yes yes yes no yes yes Advanced

Application
Custom
Properties

no no no yes no no no Advanced

../PublicAPI/ch/ivyteam/ivy/application/property/ICustomProperties.html
../PublicAPI/ch/ivyteam/ivy/security/IUser.html

Concepts

388

Concept Overriding Project
Dependencies

EnvironmentsPublic API Web
Accessable

Designer UI Engine UI Knowledge

User
Properties

no no no yes no no no Advanced

Rich Dialog
User
Context

no no no yes no (yes) no Expert

Table 9.7.

Overrides
This chapter deals with the concept of overrides and describes the Overrides Editor and the New Override Wizard. Overrides
can be used to selectively redefine components of required projects so that replacement components are used at runtime
instead. This is often a desired feature if an existing (possibly abstract) project or application is to be tailored for a specific
customer or installation.

The Concept of Overrides
Applications are often implemented as a general solution for a problem and consist of multiple (dependent) projects. For many
installations or customer projects it is desirable that certain parts of such a generic solution may be redefined in the context
of a specific installation or customer.

To permit this, Axon.ivy knows various concepts of context-sensitive redefinitions:

• Regular redefinition (e.g. for Content Objects and/or Configurations): Simply define an already existing artifact with the
same name again in a different project.

• Redefinition with environments (e.g. for Databases, Web Services, Global Variables): Redefine values and properties of
global artifacts depending on the execution context.

• Redefinition with overrides (e.g. for Rich Dialogs and/or Sub Processes): Define a replacement component for an already
existing component.

This chapter only deals with the third category of artifact redefinitions (overrides).

By defining overrides on project level, the lookup of a certain component can be redirected to a replacement component.
When a component is referenced in a process model of that project then the lookup for this component will yield a different
component (i.e. the replacement) at runtime instead of the originally referenced component.

Warning

This happens completely independent of the original designers intention and will take place every time a
component is looked up.

Case Scope

How is a component looked up? For the lookup of components at runtime, the so-called case scope is crucial. The case scope
is determined by the project, in which the current case was started, e.g. where the start of the running business process was
invoked. All component look-ups as well as configuration and content management references are processed within the case
scope, i.e. the look up of such artifacts always starts at the project that defines the case scope.

Example: The Acme Web shop

As an example, imagine a web shop application. It contains the following (generic) business process:

Concepts

389

The main process itself (Order) and each of the depicted sub processes (DoOrder, ProcessOrder, Shipment) are defined in own
projects. All of those projects together form a (generic) web shop application, depicted below. The web shop project contains
the business process and it's start; the Frontend project contains the DoOrder sub process; the backend project contains the
ProcessOrder sub process; the Shipment project contains the Shipping sub process.

In this scenario, regardless of the task that is currently being executed (customer, back office, shipping), the case scope will
always be the web shop project, because the business process is started from there.

We now define an additional project, Acme web shop. The new project is dependent on web shop and the intention is to bundle
all Acme-specific overrides and adoptions in this project. The already existing projects plus this new project form together a
more specific and customized Acme web shop application, with the following project dependency tree:

Concepts

390

If the main business process is copied from the web shop project to the Acme web shop project, and if it is ensured that the
process request is issued through the Acme web shop project instead of the web shop project, then all tasks of an order case
will consequently have Acme web shop as their case scope.

Knowing this, we can now specifically override and redefine Content Objects, Configuration entries, Rich Dialogs or Sub
Processes from the original generic web shop application by redefining them inside the Acme web shop project. Afterwards,
whenever a business process with case scope Acme web shop is started, then the overridden artifacts and components will be
used instead of the original ones, due to the case-scope based lookup mechanism.

General Definition

The following figure illustrates the adaption of an application with overrides in a general way:

Figure 9.9. Adapting a generic application with overrides

It can be seen that multiple adoptions (Client A, Client B) may be created for a generic main project. Also, each adaption
may override different components.

Because Request 1 and Request 2 have different cases scopes, Request 1 (issued through the Client A project) will use the
overridden Rich Dialog x.B' instead of the original x.B; Request 2, however, will use the original x.B Rich Dialog, because
there is no redefinition within the case scope of the Client B project. Likewise the invocation of the Sub Process y/Q will
result in the execution of the override y/Q' in Request 2, and the execution of the original y/Q in Request 1.

Concepts

391

Note

If it should happen that the business process m/P2 is executed through the main project directly, then no overrides
will be applied at all. Since such a "direct" invocation normally results in an unwanted case scope, it should be
prevented. The easiest way to do so is the usage of a process facade as described below.

Process Facade

If the override mechanics are to work as intended, it must be ensured that processes are always and solely started from the
adapted customer projects to ensure the proper case scope. This requires that all business processes (or rather their request
start elements) must be copied to the adapter project.

To simplify this task and to reduce the work to the copying of a single file, it is recommended to employ the process facade
design pattern.

Inside the main project of the generic application create a single process (e.g. Main) that holds the start elements of all the
elementary business processes of the application. Factor the logic of those processes out into sub processes and call them
from the facade process stubs, as illustrated below. With this approach, only one process (the facade) has to be copied to the
top-level customer project.

Warning

When factoring out sub processes, please keep in mind that you should not use task switches in sub processes
of required projects. As a general recommendation, any factored out sub process should roughly correspond to
the contents of a task (or parts of such), but should not span multiple tasks.

Figure 9.10. Implementing a process facade with process stubs

The portal website, the workflow UI or whichever other means that are used to start the application's business processes should
only show the processes from the copied facade process. As all the out factored Sub Processes will also be available from
the adapter project, no further changes have to be made.

Overrides Editor
Overview

The Axon.ivy Overrides Editor shows the registered and active overrides for a specific project. The overrides are listed in 4
different sections: Rich Dialogs, Sub Processes, Content Objects and Configurations.

Rich Dialog and Sub Process overrides require - for technical reasons - the registration of a mapping (this is done automatically
by the New Override Wizard) which maps the original component's identifier to the replacement identifier. This mapping is
displayed in the Override Editor and can be deleted by selecting an entry and subsequently clicking on the delete icon in the

Concepts

392

section's tool bar. When clicking on the wizard icon in the tool bar, a new override mapping of that category can easily be
added by entering all necessary information into the opening wizard.

Overrides of Content Objects and Configurations, on the other hand, do not require a renaming and an extra mapping between
the original and the overriding component. They are simply created by adding a new Content Object or Configuration entry
with the name of a component that already exists in a required project. At runtime, the new component will be found first and
thus shadow the original value. For this type of override no special actions are available from the editor; you should use the
respective editors (Content Editor and Configuration Editor) to create or delete overrides. The editor shows the overrides of
that type for reasons of a centralized overview and for convenience, rather than to provide an interface to edit them.

Figure 9.11. The Override Editor

Accessibility

Axon.ivy Project Tree > double click on the Overrides node.

Features
Sub Process Overrides This section shows all Sub Process overrides that are registered for the selected project.

You can delete an existing override by pressing the delete icon in the section's tool bar.

Concepts

393

This will only delete the mapping (and thus the execution of the override) but not the
replacement Sub Process itself. You can add new Sub Process overrides by clicking on
the wizard icon in the tool bar (this can also be used to "restore" a previously deleted
mapping).

Rich Dialog Overrides This section shows all Rich Dialog overrides that are registered for the selected project.
You can delete an existing override by pressing the delete icon in the section's tool bar.
This will only delete the mapping (and thus the execution of the override) but not the
replacement Rich Dialog itself. You can add new Rich Dialog overrides by clicking on
the wizard icon in the tool bar (this can also be used to "restore" a previously deleted
mapping).

Content Object Overrides This section shows all Content Objects that are redefined in the selected project, i.e.
the Content Objects for which there is an entry with the same URI in a required project.
At execution time the redefined Content Object will be used.

You can delete overriding Content Objects directly from the list (multi-select a few
lines and hit Delete) or use the Content Editor to add new overriding Content Objects.

Configuration Overrides This section shows all Configurations that are redefined in the selected project, i.e. all
Configurations for which there is an entry with the same name in a required project. At
execution time the redefined Configuration will be used.

You can delete overriding Configuration entries directly from the list (multi-select
a few lines and hit Delete) or use the Configuration Editor to add new overriding
Configuration entries.

New Override Wizard

Overview

The New Override Wizard lets you create a new override. The wizard performs two tasks:

1. It will create an independent copy (snapshot) of the original component with a new name in the current project.

2. It will create and register a mapping <original,replacement> in the list of overrides that are known to the system. The
list of those mappings can later be inspected and edited with the Override Editor.

Note

Please be aware that any Sub Process that is being overridden must have "use own data class" explicitly set in
it's inscription. The wizard will not let you create an override of a process if this is not the case, because the
"use default data class" setting will result in a different data class inside the target project where the override
will be created.

If the wizard refuses to create an override for this reason then you can set an explicit data class in the values
tab of the original process's inscription mask.

Concepts

394

Figure 9.12. The New Override Wizard

Accessibility
File > New > Override

Features
Original Type Choose the type of component for which an override replacement should be created (Rich

Dialog or Sub Process).

Original Identifier Specify the identifier of the original component that should be overridden at runtime. Use
the button next to the text field to select from the available Rich Dialogs or a Sub Processes.
Please note that only components from required projects can be overridden, there is no point
in defining an override for a component in the same project (see override concept).

Replacement Namespace Chose a namespace for the replacement component.

Replacement Name Enter the name of the replacement component.

Note

If you create an override for a Sub Process, then a copy of the data class of the
original component will be created (snapshot) and will be associated with the
replacement process. The name of the copied data class will be inferred from
the replacement component's identifier (namespace + name).

Finally... Select whether you want the respective component's editor to open on the replacement
component once the override has been created.

Error Handling
Errors are used to model exceptional process paths. With an error the happy path of a process is left. An error is caught by an
Error Boundary Event or Error Start Event if their Error Code pattern matches the thrown Error Code.

• Errors are divided into technical errors (e.g. database connection problem) or business errors (e.g. approval declined).

• An error is defined by an Error Code.

• The error may be caught by an “Error Boundary Event” attached to the activity or subprocess, or by an “Error Start”.

Concepts

395

• An Error Boundary Event or Error Start Event with an empty Error Code catches every error.

Error Codes
Error codes are defined as strings. They can be refined by inserting a colon (:). Multiple sub Error Codes can be caught using
wildcards (*). Trailing wildcards are optional so the string custom:error is the same as custom:error:*.

Example

If the error code booking:failed is thrown it can be caught with following error code patterns: booking:failed,
booking , *:failed . Additionally it can be caught by an empty Error Code that catches all errors.

System Errors

System errors are thrown by process elements like Database Step or Web Service Call Step. Their error codes are set by default
and are prefixed with ivy (e.g. ivy:error:database).

Throwing Errors
An error can be thrown explicitly by an Error End Event, or from code executed in IvyScript or Java. System errors (e.g.
ivy:error:database) are implicitly thrown by the system.

Error End Event

The happy path of a process can be left by throwing an error with an “Error End”. (e.g. if an approval was declined). The
Error End Event throws the error to upper process level, it can't be caught on the same process level.

Error End Events can also be used to re-throw a pre-defined ivy error with a specific error that has a meaning to the business.
(e.g. if a webservice is not available)

Error handling in Html Dialog

When an error happens inside of an Html Dialog the handling is slightly different than the default error handling.

Default Html Dialog Error Handling

Basically any thrown error (e.g. an Java exception) is handled inside of the Html Dialog itself. Therefore there is no propagation
to the caller process or between Ivy/JSF composites. It is important to handle errors locally in the Dialog Logic to let the user
work uninterrupted on the same dialog.

Concepts

396

Exit an Html Dialog by an Error End Element

It is possible to exit an Html Dialog by an Error End Element. This is useful to leave the happy path of the calling business
process. The throwing Error End Element must be located in the Html Dialog Logic of an Html Dialog Page (not an
Component).

IvyScript or Java Code

Unhandled Script exception

If an unhandled exception occurs while executing IvyScript or Java code then the calling process element throws an error
with the Error Code ivy:error:script. On the error object the causing Java exception is available as technical cause.

Throwing an error programmatically

An error with a certain Error Code can be thrown using the following IvyScript code:

import ch.ivyteam.ivy.bpm.error.BpmError;

BpmError.create("mystock:empty").throwError();

An error with a certain Error Code can be thrown using the following Java code:

import ch.ivyteam.ivy.bpm.error.BpmError;

throw BpmError.create("mystock:empty").build();

Elements throwing System errors

The process elements Program Interface, Database, WebService and E-Mail throw system errors. If an exception or timeout
occurs on these elements it can be caught using a matching Error Code or using a directly addressed Error Start Event. On
the Error Start process element more information about the error can be accessed via the variable error and the legacy
variable exception.

Catching Errors
Errors can either be caught by Error Boundary Events or Error Start Events.

An error is caught in the following order:

1. By an Error Start Event directly addressed in the element's inscription mask. (If available on the inscription.)

2. By an Error Boundary Event attached directly to the activity the error comes from.

3. By an Error Start Event on the same process level if not thrown by an Error End Event.

4. By an Error Handling on the next higher process level, starting there with step 2 until the top level process is reached.

5. By a Project Error Process in the top-level project.

6. If the error is not caught it is displayed to the user on the standard error page.

Concepts

397

Note

Each process - including the embedded subprocess - is a separate process level.

Error Boundary Event

An “Error Boundary Event” catches errors which were thrown from the attaching activity or subprocess if the configured
Error Code matches the thrown error.

Error Start Event

An “Error Start” catches unhandled errors which were thrown in the same process or inside a subprocess if the configured
Error Code matches the thrown error.

Loop Prevention

To prevent endless process execution trough an inappropriate error handling, the ivy process engine detects loops during the
error handling. If the engine detects a loop the error handling will be continued on the next higher process level with the new
error code ivy:error:loop, to interrupt the cycle.

Loop detection is done on error catching elements (Error Start Event and Error Boundary Event). The engine checks if there
was already an identical execution of the catcher at this process level. Identical means: Same process request, same throwing
element (including its process callstack) and same catching element (including its process callstack).

Lets illustrate this with two use cases:

Use Case 1

The process element throws an BpmError. The Error Boundary Event will catch the error and call the process element again.
In this case, the loop detection will interrupt the process when the Boundary Error Event was reached the second time. This
would also be the case, when the throwing error element is located in a composite or callable process.

Concepts

398

Use Case 2

In this case, the loop detection will interrupt the process 'callInCall1' after the second error handling. The process will be
continue by the error handling on the caller process with the error code 'ivy:error:loop'. The process will end on the End
Element named 'done'.

Project Error Process

A Project Error Process catches uncaught errors from the whole project. The name of a Project Error Process must start with
Error and has to reside in the top-level process group Processes. It can contain one or more Error Start Events.

Note

The process data of the throwing process (i.e. the value of the in variable) is not available in the Error Start
of a Project Error Process.

Error Object

The error object provides the following information about the error that was caught:

Concepts

399

• Unique Error ID

• Error Code

• Technical Cause (Java Exception)

• Process element

• Process call stack

• User defined error attributes

For more information see the Public API of BpmError

Rule Engine
A Rule Engine is basically a software system that maintains and executes a given set of rules. More specifically, rules in a rule
engine are usually described in a declarative way. Mostly in the notion of conditions and actions. Or in more developer friendly
words, it's a bunch of if-then statements. For example, let's take a simple rule for computing the premium for a car insurance:

if owner.livesInDodgyArea then
 if car.price < 50000
 premium += 100
 else if car.price < 100000 then
 premium += 200
 else
 premium += 300

if owner.livesInBumpyStreetConditionArea then
 if car.type == SPORTSCAR then
 premium += 500
 else if car.type != SUV AND car.type != TRUCK then
 premium += 100;

You can imagine that with this approach you end up pretty soon into the Spaghetti-code anti-pattern. You have to take care
of all the dependencies and relations between all the facts on your own leading to a forever-growing if-then statement that
is almost impossible to maintain.

In a rule engine, you create simple standalone rules and you let the rule engine decide what to fire when. The subtlety is that
rules can be written in any order, the engine picks the ones for which the condition is true, and then evaluates the corresponding
actions. So instead of the massive if statement, you write the following rules:

if owner.livesInDodgyArea AND car.price < 50000 then premium += 100

if owner.livesInDodgyArea AND 50000 < car.price < 100000 then premium += 200

if owner.livesInDodgyArea AND car.price > 100000 then premium += 300

if owner.livesInBumpyStreetConditionArea AND car.type == SPORTSCAR then premium += 500

if owner.livesInBumpyStreetConditionArea AND car.type != SUV OR car.type != TRUCK then premium += 100

Because of this simplifaction it might even be possible for non-developers to define or configure the rules (a little bit of tool
support helps too).

In short, a rule engine helps you to decouple your production rules from the rest of the code and makes it much more
maintainable for both developers and domain experts. But remember that everything has its flip side. Adding a rule engine
means adding another level of complexity into your architecture (you replace plain code with a new system). And as the size

../PublicAPI/ch/ivyteam/ivy/bpm/error/BpmError.html
https://en.wikipedia.org/wiki/Spaghetti_code

Concepts

400

of your rule sets grow, so does the potential impact to the performance. For more information about rule engines, please refer
to one of the many available resources in the Internet.

Tip

In Axon.ivy, we integrate the open source rule engine Drools to give you the flexibility to use a rule engine if
you want. We wrapped some of the most basic features of Drools into our own UI and API. If you need more
than that, then simply use the normal full blown Drools API.

Decision tables and DRL files
We support two formats for defining rules: decision tables and rules written in the Drools Rule Language (DRL). A decision
table is like the name says a table that can contain many rules. The columns usually make up the variables of the preconditions/
actions whereas each row in the table specifies one rule. Let's see the decision table for our example:

Pre-Condition Action

lives in dodgy area price min price max lives in bumpy
street area

type of car addition to basic premium

yes 0 50000 no - 100

yes 50000 100000 no - 200

yes 100000 - no - 300

no - - yes sports car 500

no - - yes sedan 100

Table 9.8. Decision table

Decision tables are simple to understand and maintain, especially for domain experts. On the other hand, the more variables
and rules you use, the more your decision table bloats up and makes it hard to maintain.

The Drools Rule Language (DRL) on the other hand is more oriented towards developers. It is the native rule language of
Drools. Let's see a rule in DRL:

rule "Luxury cars in dodgy areas cost a nice extra premium"

when
 c: Car(dodgyArea==true, price > 100000)
then
 c.premium += 300;
end

Use the context menu entry New, the menu File > New or the tool bar button New to create either a new decision table or a
DRL rule file. The rules will be shown in the project tree below their root folder Rules.

Execute rules
Before we see how you can use the rule engine to do something, let's once more make very clear the difference between logic
in source code and using a rule engine. In code you have to explicitly define which part of the code to call, you are in control
and responsibility to do the right things in the right order. In a rule engine this is different, you simply tell the rule engine to
execute and it does find out itself which rules apply and which rules to fire.

To run the rule engine you have to use the Public API of the rule engine, e.g. in a script step or in a Java class. Use
ivy.rules.engine to access the execution part of the rule engine API. First you will need to create a so called rule base.
A rule base is a container in which you can load multiple rule files.

IRuleBase myRuleBase = ivy.rules.engine.createRuleBase();
myRuleBase.loadRulesFromNamespace("my.rule.name.space");

http://www.drools.org

Concepts

401

Tip

In the designer, the rule files are hot deployed into rule base. So when you are running your process and you
change a rule file that is loaded in a rule base, then the Designer automatically unloads the old version of the
rule file and loads the new one.

Tip

Use the namespace to group rule files that belong together and use the corresponding API to load all rule files
of the same namespace together. You can also load the rule files from your dependent projects. And you can
override rules and rules files by having a rule or rule file with the same name in the overriding project.

Now, what you need too is an instance of the data model that you used in the pre-conditions and the actions of your rules.
You can either give the root object of your data or a list of objects. So, create a session, load the data into it and execute:

myRuleBase.createSession().execute(out.myDataForTheRules);

You should now see the result of the actions applied in the data that you passed into the rule engine before.

Tip

You can use the Public API in JUnit tests directly. Use this to test standalone rules and even groups of rules or
all your rules with a pre-defined input and assert if the output matches your expectations. You must extend from
AbstractRuleEngineTest and be aware that only rule files inside the same project can be resolved.

Demo project
To help you learn how to use the rule engine integration, we created a small demo project called RuleEngineDemos that is
bundled together with the Designer.

Extensions
This chapter explains how Axon.ivy can be extended by customers or 3rd party software development companies.

Extendable Process Elements
Axon.ivy contains four process elements that can be extended with your own implementation. These process elements are:

• Call And Wait Element

• Start Event Element

• Intermediate Event Element

• Program Interface

Tip

Sample implementations of custom process elements can be found on GitHub in our open source repository. E.g.

https://github.com/ivy-supplements/bpm-beans/tree/master/ldap-beans

New Bean Class Wizard

Overview

With the New Bean Class Wizard you can create a Java class that implements the required interface for an extensible process
element. It can also create an UI editor for the configuration of the event for the corresponding bean. The Java class that is
created contains example code about how to implement the bean.

https://github.com/ivy-supplements
https://github.com/ivy-supplements/bpm-beans/tree/master/ldap-beans

Concepts

402

Figure 9.13. New Bean Class Wizard

Accessibility

Process Editor > inscribe > Inscription Mask > ... > Java Class to execute >

Features

Source Folder The source folder the new Bean class should be created in.

Package The Java package the new Bean class should be created in.

Name The name of the new Bean class.

Interfaces The interfaces the new Bean class should implement.

Generate comments Should the new Bean class contain Javadoc comments?

Create UI Editor Class Should an UI Editor class for the new Bean class be created?

Provide your own process elements
It is possible to provide your own process elements to Axon.ivy. The process elements you provide are based on the standard
extensible process elements Program Interface (PI), Start Event, Intermediate Event and Call& Wait. The bean class of your
process elements are hard coded and cannot be changed on the inscription masks.

To define such process elements use the extension point
ch.ivyteam.ivy.process.element.IExtensibleStandardProcessElementExtension. After you have implemented this extension
point, Axon.ivy knows about your process elements but they do not appear on the user interface.

../PublicAPI/ch/ivyteam/ivy/process/element/IExtensibleStandardProcessElementExtension.html

Concepts

403

To add your process elements to the process editor palette use the extension point
ch.ivyteam.ivy.designer.process.ui.editor.palette.IIvyProcessPaletteExtension.

Now your process elements are visible on the palette, but the labels for the process elements are not yet defined. Use the
extension point ch.ivyteam.ivy.designer.process.ui.info.IProcessElementUiInformationExtension to define the labels (short
name, name and description) of your process elements.

Last but not least, you have to ensure that Axon.ivy can load the bean classes of your process elements. Use the extension
point ch.ivyteam.ivy.java.IIvyProjectClassPathExtension to add the classes of your bundle to the Axon.ivy project runtime
class path. You can now use your own process elements in Axon.ivy.

Tip

Sample implementations of custom process elements can be found on GitHub in our open source repository. E.g.

• https://github.com/ivy-supplements/birt-reporting

• https://github.com/ivy-supplements/bpm-beans/tree/master/rule-beans

Axon.ivy Extension Mechanism
There are other ways to extend Axon.ivy than with the process elements mentioned above. You may want to start your own
code during the startup of the Axon.ivy Engine, for example to connect to your ERP system. You may have a product that
administrates your users and you want to use the same users also in Axon.ivy. For such kind of extension or integration
Axon.ivy provides an extension mechanism that allows the execution of 3rd party code on some points. These points are
called extension points.

Build an Axon.ivy extension bundle (Eclipse plugin)

To provide an Axon.ivy extension you have to build an Eclipse plugin for the Axon.ivy Designer or Engine.

You can build your Eclipse plugin in the Axon.ivy Designer with the following steps:

1. Start Axon.ivy Designer

2. Switch to the Plug-in Development Perspective. Menu: Window > Open Perspective > Other... > Plug-in Development

3. Create a new Plug-in Project. Menu: File > New > Project In the appearing dialog:

• Choose Plug-in Project.

• Press the Next button.

• Enter a project name.

• Press the Next button.

• Enter the Plug-in Properties.

Property Description Example

Plug-In ID Identifier of the plugin. Must be
unique. This identifier must be
specified in the *.extensions file in the
bundle attributes.

ch.ivyteam.ivy.example

Plug-In Version The version of the plugin 1.0.0

Plug-In Name The name of the plugin. The name is
used for documentation only

Example

../PublicAPI/ch/ivyteam/ivy/designer/process/ui/editor/palette/IIvyProcessPaletteExtension.html
../PublicAPI/ch/ivyteam/ivy/designer/process/ui/info/IProcessElementUiInformationExtension.html
../PublicAPI/ch/ivyteam/ivy/java/IIvyProjectClassPathExtension.html
https://github.com/ivy-supplements
https://github.com/ivy-supplements/birt-reporting
https://github.com/ivy-supplements/bpm-beans/tree/master/rule-beans

Concepts

404

Property Description Example

Plug-In Provider The provider of the plugin. The
provider is used for documentation
only

ivyTeam / Soreco Group

Table 9.9. Plug-in Properties

• Press the Finish button.

4. In the appearing editor click on the Dependencies tab. In the section Required Plug-ins press the Add button. From the
list of plugins choose the one that provides the extension point you are going to extend right now. Press the Ok button.

5. Switch to the Extensions tab. In the section All Extensions press the Add button. From the list of extension points
choose the one you want to provide an extension for. Press the Finish button.

6. Select the added extension point from the list in the section All Extensions. Select the added sub entry. In the section
Extension Element Details click on the link class*.

7. A New Java Class dialog appears. Enter the name of your extension class into the Name text field and the package
where it should be located into the Package text field.

8. Write your extension class implementing the interface that the extension point requires (see Extension points)

Concepts

405

9. Switch back to the META-INF/MANIFEST.MF file editor. Choose the Overview tab and click on the link Export
Wizard. As Destination Directory choose the dropins directory of your Axon.ivy Designer or Engine installation. Press
the Finish button. Your plugin is created into the dropins/plugins directory.

Installation

You have to do the following steps to install your extensions in Axon.ivy Designer or Engine:

1. Stop the running instance if any.

2. Copy your plugin (bundle) that contains your extension classes to the dropins directory inside the Axon.ivy Designer
or Engine installation directory.

3. Start the Axon.ivy Designer or Engine.

Tip

If your extension is not active as expected, consult the dropins/README.html.

Extension Point Reference
Axon.ivy supports the following extension points:

Extension Point Description

ch.ivyteam.ivy.server.IServerExtension A Server extension can be used to start and stop your code
when the Axon.ivy Engine is started or stopped. Server
extensions can be accessed from Process Start Event and
Process Intermediate Event Beans and also from every process
element using the ivy.extensions environment variable.

ch.ivyteam.ivy.process.element.IExtensibleStandardProcessElementExtensionThis extension point can be used to define your own process
elements based on the process elements Program Interface
(PI), Start Event, Intermediate Event and Call&Wait.

ch.ivyteam.ivy.designer.process.ui.editor.palette.IIvyProcessPaletteExtensionAdds new groups and process element entries to the
process editor palette.

ch.ivyteam.ivy.designer.process.ui.info.IProcessElementUiInformationExtensionProvides labels (name, description) for your own process
elements.

ch.ivyteam.ivy.java.IIvyProjectClassPathExtension Adds libraries or classes from bundles to the ivy project
class path. The extension point allows to add libraries or
classes to the compile and the runtime class path. This
extension point is useful if you want to provide your own
classes in a eclipse bundle and want to access these classes
from ivyScript or use them as Program Interface (PI), Start
Event, Intermediate Event and Call&Wait bean.

Table 9.10. Axon.ivy Extension Points

Rich Dialog Client Side Libraries
Providing a Custom Certificate

This section shows you how to provide a custom certificate for your Rich Dialog clients.

Note

When a client starts a Rich Dialog for the first time, a security information dialog box pops up showing
information about the publisher of Axon.ivy as well as the publisher's certificate. It may be confusing to the

../PublicAPI/ch/ivyteam/ivy/server/IServerExtension.html
../PublicAPI/ch/ivyteam/ivy/process/element/IExtensibleStandardProcessElementExtension.html
../PublicAPI/ch/ivyteam/ivy/designer/process/ui/editor/palette/IIvyProcessPaletteExtension.html
../PublicAPI/ch/ivyteam/ivy/designer/process/ui/info/IProcessElementUiInformationExtension.html
../PublicAPI/ch/ivyteam/ivy/java/IIvyProjectClassPathExtension.html

Concepts

406

users of your application that a certificate from Axon.ivy is displayed instead of a certificate of the implementor/
vendor of the software they're using. This section shows you how to avoid this situation.

Install a Java Developer Kit (JDK)

Install a Java Developer Kit (JDK) version 1.7. You can download it from http://java.oracle.com

Creating a custom certificate

Use the keytool from the previously installed JDK to create a custom certificate in a Java keystore. You may also want
to sign your certificate by a certification authority.

See the JDK keytool documentation for details.

Signing the Rich Dialog client libraries

To sign your custom Rich Dialog client extensions with a custom certificate, proceed as follows:

1. Configure the following properties:

keystore.file, keystore.password, keystore.alias and dir.jdk

in the file

[Axon.ivy Designer Installation Directory] / clientlib / build.properties

Save your changes.

2. Open the Ant build file

[Axon.ivy Designer Installation Directory] / clientlib / build.xml

in Axon.ivy Designer.

3. Open the Outline View (Use the menu Window > Show View > Others... > General > Outline)

4. In the Outline View select the root entry in the tree. Right click to bring up the context menu and select Run As > Ant
Build to run the Ant build script (build.xml). The Console View will show what the Ant build is doing and if there are
errors during the build, they will shown in the Console View as well.

5. If the Ant build was successful then a new directory has been created:

[Axon.ivy Designer Installation Directory] / clientlib / customSigned

This directory now contains the new Rich Dialog client libraries which have been signed with your certificate.

Axon.ivy Designer will automatically use libraries that are located in this new directory when a Rich Application is started,
i.e. the provided client side libraries will automatically be deployed to the client when simulating the next time.

Note

If an error message like jarsigner error: java.lang.RuntimeException: keystore load:
DerInputStream.getLength(): lengthTag=109, too big. appears, try setting the property
keystore.type accordingly to the type used in the keystore.

Deploying custom signed Rich Dialog client libraries

To use the new custom signed client side extensions with another Axon.ivy Designer or Engine, simply copy the directory

Axon.ivy Installation Directory / clientlib / customSigned

http://java.oracle.com
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Concepts

407

with all its files to a directory with the same name of another Axon.ivy Designer or Engine Installation Directory.

Restrictions

Warning

Upgrading Axon.ivy Designer or Engine may install a new version of the standard client side libraries. If this
is the case you have to resign your custom Rich Dialog client side libraries so that they are compatible with the
newer standard client side libraries.

Axon.ivy Designer will fall back to the standard client side libraries if the custom signed client side library
version does not match.

Axon.ivy Engine can only be started if the custom signed client side libraries have exactly the same version as
the standard client side libraries.

Warning

All Rich Dialog client libraries located in the clientlib/customSigned directory must be signed by the same
certificate. Otherwise the Rich Dialog client will not start because of security restrictions.

Warning

Because of performance optimizations (lazy loading) all client side libraries located in the clientlib/customSigned
directory must be signed together. Do not mix new with previously signed libraries, otherwise the lazy loading
index will be inconsistent, leading to errors on the client side when executing your application.

Providing custom ULC Widgets

Warning

Development of custom ULC widgets is only permitted with a valid ULC developer licence. Licences and
more information about the ULC (Ultra Light Client) framework can be obtained from Canoo.

Licenced ULC developers may contribute their own ULC extensions to an Axon.ivy installation. This chapter explains how
custom ULC widgets can be included by packing them into a Axon.ivy Rich Dialog Client Extension.

Using custom ULC Widgets

To use a custom ULC Widget the following steps are necessary:

1. The server side classes of the custom ULC Widget must be located in a Axon.ivy Project, so that they can be loaded
on server side.

2. The client side classes of the custom ULC Widget must be located in a Axon.ivy Rich Dialog Client Extension that is
installed in the directory clientlib/extensions.

Packing custom ULC Widgets to an Axon.ivy Rich Dialog Client
Extension

To pack custom ULC Widgets to an Axon.ivy Rich Dialog Client Extension the following steps are necessary:

1. The client side classes of the custom ULC Widgets must be available in *.jar files.

2. In the Axon.ivy Designer Installation Directory / clientlib / extensions directory create a new sub directory with the name
of your extension

http://www.canoo.com/
http://riasuite.canoo.com/
http://www.canoo.com/

Concepts

408

3. Create another sub directory called clientLibs inside the previously created extension sub directory. The directory
structure now looks like:

Axon.ivy Installation Directory / clientlib / extensions / myExtension / clientLibs

In the example the extension is called myExtension.

4. Copy the .jar files with the client side classes to the clientLibs sub directory created above.

5. Now, execute the same steps that are necessary to provide a customer certificate. Instead of using the file Axon.ivy
Designer Installation Directory / clientlib / build.xml use the file Axon.ivy Designer Installation Directory / clientlib /
extensions / build.xml. See section above.

If the Ant build is successful then a new directory was created:

Axon.ivy Designer Installation Directory / clientlib / extensions / myExtension / signed

It contains the jar files with the custom ULC Widgets signed with your certificate. The build will also create an extension
configuration file if no such file is already available:

Axon.ivy Designer Installation Directory / clientlib / extensions / myExtension / extension.any

It contains information about your Axon.ivy Rich Dialog Client Extension like title, vendor, homepage, etc.. But also the
version of the extension. This version should be increased and the extension rebuilt every time the client side classes of the
ULC Widget changes.

Axon.ivy Designer will automatically use the new created extension for the Rich Dialog clients.

Deploying Axon.ivy Rich Dialog Client Extensions

To deploy an Axon.ivy Rich Dialog Client Extension simple copy the extension directory (e.g. myExtension) that contains the
extension.any file and the signed directory inclusive the signed jars to the directory clientlib / extensions of another Axon.ivy
Designer or Engine Installation.

Note

It is possible to install multiple Axon.ivy Rich Dialog Client Extensions from different vendors with different
certificates.

Restrictions

Warning

All Jar files of one extension must be signed by the same certificate. Otherwise the Rich Dialog client will not
start because of security restrictions.

Warning

Because of performance optimizations (lazy loading) all jar files of one extensions must be signed together. Do
not mix new with previously signed jar files, otherwise the lazy loading index is inconsistent.

Troubleshooting Java Web Start Cache Problems
Rich Dialog Clients are using a technology called Java Web Start. Java Web Start caches all libraries it downloads from
Axon.ivy. This can cause conflicts if you are developing and do not increase the version of your client side classes if they
change or if you changing certificates. The following command line tools can help to solve problems.

Use the following command line to clean the cache of Java Web Start. This will remove all cached libraries from the cache:

Concepts

409

javaws -uninstall

Use the following command to inspect the libraries that are cached by Java Web Start:

javaws -viewer

Deployment
This chapter explains how an Axon.ivy Designer Project can be deployed to an Axon.ivy Engine. Before deploying an
Axon.ivy project it is important to understand some major concepts and terms of the Axon.ivy Engine. The following chapter
introduces these concepts and terms.

Application

On the Axon.ivy Engine, applications can be configured. An application spans up an environment in which roles, users,
external databases, tasks, cases and process models exist. Applications are completely independent of each other. E.g. a user
of one application can not work on a task of another application.

Process Model

Within an application multiple process models can be configured. A process model on the Engine corresponds to an Axon.ivy
project on the Designer. The difference is that a process model may hold multiple different versions of the same Axon.ivy
project. A process model version - as its name suggests - is a version of an Axon.ivy project. In fact this version represents
the state of an Axon.ivy project at the time it was deployed on the Engine.

Concepts

410

Process Model Version

A process model can have multiple versions called process model versions. These versions allow to change an Axon.ivy
project without worrying about the compatibility of currently running cases on the Engine. How does this work? When an
Axon.ivy project has been finished or reached a milestone, it is going to be deployed as the first process model version. Users
can use this project, they start processes. Some of the processes may last long time (weeks, months, or even years). While
these processes (e.g. cases) are running, the project may be enhanced and might have now incompatible changes to the first
version. Now the changed project can not be deployed to the first version but to a new configured version. Consequently old
cases must not be stopped, they will be still executed within the first process model version. Meanwhile new cases are started
from the new deployed version.

A process model version has a release state. The release state of a process model version is responsible how the version is
used by the system. The most important release state is the state RELEASED. Within a process model only one version can
be in this state. All processes that are started in a process model are started in the released process model version! A complete
list of release state can be found in the following list:

Name Description

PREPARED The process model version has been created and the project
may already have been deployed. However, the process model
version is not yet used.

RELEASED The process model version is the currently released version.
This means that all new processes are started in this version.
Program Starts and Web Service Processes are only active for
process model versions in this state.

DEPRECATED The process model version has previously been in state
RELEASED, but then another version was released.
Therefore, this version is now not in RELEASED state but
in DEPRECATED state. All cases that were started in this
process model version will continue to run in this version. As
soon as all cases of this version have been ended, the state will
change to ARCHIVED automatically.

ARCHIVED The process model version has previously been in state
RELEASED, but then another version was released, and
running cases has been finished in this process model.
Consequently, this version is now not in RELEASED state
anymore but has been ARCHIVED. Actually the engine
administrator can change a process model version from state
ARCHIVED back to state RELEASED if necessary.

Concepts

411

Name Description

DELETED The process model version has been deleted. All project data
belonging to this version has been deleted.

Table 9.11. Release states of process model versions on Axon.ivy Engine

The following diagram shows all release states and state changes that are possible:

Configuration Example
The following table shows an example of how applications, process models and process model versions on an Axon.ivy
Engine can be configured.

Application Process Model Process Model Version Description

Company1 Application for company1.
All users of the company
are automatically imported
to this application from the
company's active directory
server.

HRM Human Resource
Management process model.
Corresponds to the Axon.ivy
project called "HRM".

V1 The first version of the
HRM project was released in
February 2008. This version
is deprecated. There are still
cases running in this version

V2 The second version of the
HRM project was released in
April 2008. This version is
released. All new processes
are started in this version.

V3 The third version of the
HRM project was created in
January 2009. This version
is prepared, but not used

Concepts

412

Application Process Model Process Model Version Description

productive. It will be released
on the first of September
2009.

Finance Finance process model.
Corresponds to the Axon.ivy
project Finance.

V1 The first version of the
Finance project was released
in August 2007. This version
is released. All new process
are started in this version.

Company2 Application for company2.
The users of the company
are managed by the Axon.ivy
Engine.

HRM Human Resource
Management process model.
Corresponds to the Axon.ivy
project called "HRM".

V1 The first version of the HRM
project was released in April
2008. This version is released,
so that all HRM processes of
company2 run and are started
in this version.

Table 9.12. Configuration Example

Axon.ivy Project Deployment
To deploy an Axon.ivy project to the Axon.ivy Engine execute the following steps:

1. Export all files of the project you want to deploy to a zip file using the Export wizard of Axon.ivy Designer (See next
section).

2. Copy the zip file with your project files to the Axon.ivy Engine.

3. Start the Engine Administrator application on the Axon.ivy Engine

4. Choose or create an application

5. Choose or create a process model

6. Choose or create a process model version

7. Open the detail page of the process model version and find the section Deployment.

8. Press the Deploy button to start the deployment wizard.

9. On the first step of the deployment wizard choose the zip file with your project files and follow the wizard to deploy
your project.

Tip

More information about the deployment of Axon.ivy projects or applications, process models and process model
versions can be found in the Axon.ivy Engine Guide.

Concepts

413

Export all Project Files to a ZIP-File
For the deploying of a project it is useful to export all files of a project to a zip file. This can be done with the export wizard of
Axon.ivy Designer. Start the export wizard either by using the menu File > Export ... or by using the context menu Export ...
in the Ivy Project Tree on a selected project.

Figure 9.14. Export Wizard

On the export wizard select General > Archive File. Then press the Next > button.

Figure 9.15. Export Wizard

Concepts

414

Choose the project you want to deploy (export). Only select one project because the Deployment wizard can only handle
one project in a zip file. Specify the zip (archive) file and press the Finish button. The created zip file can now be used to
deploy your project to the engine.

Continuous Integration
Ivy Projects are designed to be built on a continuous integration (CI) server like Jenkins.

Maven build plugin
The project-build-plugin is a Maven plugin that can build Ivy Projects on a developer machine or on a continuous integration
server. The plugin provides the following main features:

• Compilation of Ivy Projects

• Testing of unit tests against an Ivy Project or the Ivy core classes

• Packaging of built Ivy Projects as IAR (ivy archive) artifacts

• Installation of IAR artifacts into the local Maven repository

• Deployment of IAR artifacts to an Axon.ivy Engine

Runtime

The Designer has a built in Maven runtime that allows to start Maven with zero initial configuration effort. A local maven
build can be started as follows:

1. Switch to the Java perspective

2. Expand an Ivy Project in the Ivy Project Tree view

3. Open the context menu of the file 'pom.xml' by right clicking it

4. Navigate to 'Run as' > 'Maven install'

Configuration

Ivy Projects declare its ids and dependencies in the “Project Deployment Descriptor”. This deployment descriptor can be
easily edited with the corresponding ivy editor and is stored as Maven Project Object Model (POM.xml). Therefore each Ivy
Project has by default the pom.xml which is needed by maven to build it.

However advanced Maven users can adjust this default configuration and use additional Maven plugins or dependencies in
the pom.xml. But not all POM entries should be modified, some are required or limited in usage in Ivy Projects:

• <groupId/> and <version/> Must be set in every Ivy Project POM. It can not be inherited from a parent POM
(even tough this is valid in plain Maven).

• <packaging>iar</packaging> Provides the custom Ivy Project lifecycle, must not be modified.

• Dependencies with <type>iar</type> will be manipulated by the “Deployment Descriptor Editor”. Therefore
additional configurations like the <scope> could get lost trough the simple editor usage.

• Values that can be manipulated with the simple “Deployment Descriptor Editor” can not contain Maven properties. For
instance <version>${myVersionProp}</version> is prohibited.

• The version must be qualified like <version>5.0.0-SNAPSHOT</version>. A version like <version>5-
SNAPSHOT</version> is prohibited.

https://axonivy.github.io/project-build-plugin

Concepts

415

Technical documentation

• The detailed plugin goal and parameter documentation is on Github.io

• The source code of the ivy project build plugin is available on Github.com.

Continuous Integration Job with Jenkins
The following steps are needed to build an Ivy Project on a Jenkins CI server.

1. Install Jenkins as described in the Jenkins Wiki

2. Install a Maven runtime in Jenkins via Manage > Configure > Maven > Maven installation > Choose auto installation

3. Create a new Jenkins Job. Select "Maven-Project" as job style.

4. Provide a link to the source code of the Ivy Project in the Source-Code-Management section

5. Configure the goals clean verify in the Build section

6. Save the Job and Run it

Miscellaneous
This chapter deals with several concepts and features that are integrated into Axon.ivy to leverage user convenience and
experience.

Axon.ivy Search
In a workspace with many large projects it is sometimes hard to find specific Ivy elements. Then a powerful search mechanism

can save the day. To use the Axon.ivy search, just click on the symbol in the toolbar to open the search dialog. In the
dialog that opens navigate to the Axon.ivy tab. At present, searching for CMS content objects, Data Classes / Entity Classes,
Processes / Process Elements and Rich Dialogs (but not Html Dialogs) is supported by Axon.ivy.

The search page

Search string Enter here the string you are searching for. You may use two wild-cards: The * (star) for
any sequence of characters (may be empty too). and the ? (question mark) for a single

https://axonivy.github.io/project-build-plugin
https://github.com/axonivy/project-build-plugin
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins

Concepts

416

character (e.g. a*b matches each entity that starts with "a" and ends with "b" and has 0, 1
or more characters in between whereas a?b matches all strings with a length of three that
start with an "a", end with "b" and has one character in the middle)

Search For / Search In Select for what kind of entities you are looking for. Depending on the chosen type, you
can specify in which properties of the entity the search string (see above) is searched in.
If you select more than one property, then be aware that the search string must occur only
in one of the chosen properties.

Scope You can decide whether you want to search in the full workspace or only in the enclosing
projects (the projects that are selected in the Ivy Projects View). If you choose enclosing
projects you may select whether you want to include searching in dependent or required
projects (see the Project Deployment Descriptor chapter for more details about how you
can define and use project dependencies). The tool tip text tells which projects are currently
selected.

Recreate indices The search indices in Ivy are automatically updated if you add, edit or delete entities.
However, if you want to recreate the search indices hit this button and all indices are
deleted and recreated from scratch in the background. Please be aware, that searching
during the time of index creation may not return correct results.

Note

You may use as well other search facilities within this dialog to search for parts that are not covered by the
Axon.ivy search page. e.g. if you write your own Java classes in the Axon.ivy Designer you may use the Java
search.

The search result view

After clicking on the search button, the search results are collected in the search result view. Double-click on matching entries
and the corresponding resource is opened in its editor.

You can change the presentation layout for your search results by selecting a layout from the result view's menu:

For standard searches, only Project and Namespace grouping is available. For Rich Dialog searches the results can also be
displayed as thumbnails (see next section).

Thumbnail Results for Rich Dialog Search

When searching for Rich Dialogs, the results are by default presented as thumbnails.

Concepts

417

The result page shows the Rich Dialogs that have been found as a result of the search with a scaled image of the Rich Dialog's
screen shot (if one is available) and with the Rich Dialogs simple name. The tool tip (1) offers additional information, such
as the Rich Dialog's fully qualified name and the project it is located in. Rich Dialog's that don't have a screen shot are shown
with a small red square (2).

Double clicking on a thumbnail will open the associated Rich Dialog's interface editor.

The size of the displayed thumbnails can be adjusted with the slider at the bottom of the view (3). Use this slider to set your
preferred thumbnail size, it will be saved and used for all later thumbnail search results. The default size for the Rich Dialog
thumbnails is set at 160 x 120 pixels, the minimum and maximum sizes being 16 x 12 and 480 x 360 pixels, respectively.

Tip

To automatically create a screen shot for a Rich Dialog you must first enable the feature on a Rich Dialog's
interface editor (default is yes) and then open and save the Rich Dialog with the Rich Dialog editor. The screen
shot will be updated every time you make changes to the Rich Dialog.

Update Notification

When newer Axon.ivy versions are available a dialog appears after starting Axon.ivy Designer. The dialog contains
information about the new versions and where those can be downloaded.

Use the checkboxes provided on the dialog if you don't want to see the dialog again either for the same versions or for any
new versions.

If you want to check for new versions manually use the menu Axon.ivy > Check for Updates ...

Note

While checking for new versions the following statistic information are sent to the update server. These
information are only used to improve the product.

• Current designer version

• Operating system information (name, version, architecture, number of processors)

• Java memory information (maximum heap memory, maximum non heap memory)

• JVM (Java virtual machine) information (version, vendor, name)

• Host information (host name, SHA-256 hashes of IP address and MAC address to identify the host without
being able to read the original IP address and MAC address itself)

Concepts

418

Data Caching
Axon.ivy offers a feature to store data temporarily into a data cache in the engine's memory. If you want to read data that
stays unchanged for some time, you do not need to re-read the data every time you need to access it. If this data is read by
long-running queries from a database or by calling a slow web service, you can gain a lot of performance by caching this data.
The database step and the web service step natively support Data Caching (see the Data Cache Tab for more information),
for other data you can access the Data Cache API by IvyScript.

Caches

Data that is cached is always stored in a data cache entry. This can be the result of a database query or of a web service call if
you use the Data Cache Tab on the database step or on the web service step. But you can also store any arbitrary object into
a data cache entry by using the Public API. Entries are identified by a textual entry identifier.

Entries are organised into groups. An entry always belongs to exactly one group, you cannot store the same entry in more
than one group. In other words, the identifier of an entry must be unique in its group. If two entries in the same group have the
same identifiers, then they are identical. Like entries, groups are as well identified by a textual group identifier. Use groups
to store cache entries with similar data. This simplifies the invalidation of related data, see chapter invalidation below.

A Data Cache is a container for multiple groups. The identifier of a group must be unique in its data cache. If two groups in
the same Data Cache have the same identifiers, then they are identical.

Data Caches always have a scope. A scope defines the boundaries of a specific Data Cache and as well the life cycle of the
Data Cache depends on its scope:

Scope Type of cached data Multiplicity of Data Cache Data Cache life cycle start Data Cache life cycle end

Application Global data that is related to the
application

One per application Application creation or engine start Application deletion or engine stop

Environment Global data that can vary for
different environments, e.g. if you
are using tenants or different
configurations

One per application and
environment

Environment creation or engine start Environment deletion, application
deletion or engine stop

Concepts

419

Scope Type of cached data Multiplicity of Data Cache Data Cache life cycle start Data Cache life cycle end

Session Data that is related to interactions
within the actual session

One per session and environment Session start Session end

Access and Life Cycle

Cache entries and groups are created the first time they are accessed - the first time the process step with the data cache entry
is executed - and they are destroyed when the scope of cache entries or groups reach the end of their life cycle. For the scope
Session this is the logout of the user of the session or the session timeout, for the scopes Application and Environment this
is when the application is terminated or inactivated.

Cache entries and groups are resolved by their identifiers. You can put different cache entries into one group by using the
same group identifier for all entries. You can use the same data cache entry for multiple steps by using the same group and
the same entry identifier for all entries. This is very useful for data that almost never changes, you can load the data into the
cache once at the beginning of the scope's lifetime and read it from the cache from every step in all processes thereafter.

Invalidation

In order to take into consideration changes in the data that is handled by the cache entries, it is possible to invalidate cache
entries and as well whole groups either on request or after a configurable period of time. Thereby, invalidation means that
only the value of the data cache entry is deleted, but not the entry itself. The next time a step referring to this data cache entry
is executed, the value of the data cache is loaded again.

You can invalidate an entry, a group and even the whole cache explicitly in the Data Cache Tab of inscription masks of the
process steps that use data caching or by an IvyScript API call. Otherwise you may specify a period as a lifetime or fixed
time of day for invalidation. The lifetime period starts when the group/entry is loaded the first time. A background job is
responsible to invalidate entries/groups when their lifetime has ended. If you set a fixed invalidation time, the corresponding
entry or group is invalidated once per day at that time. By invalidating a group, all its contained entries are invalidated and
similarly invalidating the whole data cache does invalidate all groups and therefore as well all entries.

Concepts

420

How Data Caching works on an Axon.ivy Engine Enterprise Edition

An Axon.ivy Engine Enterprise Edition consists of multiple engine instances (nodes) that are running on different
machines.

In an Axon.ivy Engine Enterprise Edition the Application and Environment data caches will be created on each node
independently. However, if a data cache is invalidated on one cluster node either by timeout or explicitly, then it will
be automatically invalidated on all other cluster nodes as well.

On the other hand, Session data caches will only be created on one node because sessions are always bound to a specific
node in the cluster.

Eclipse Plugin Mechanism

You need a database frontend in Axon.ivy? Or editing support for any other programming or data declaration languages such
as C/C++, PHP or XML? Or you have UML models to view? No problem at all.

Axon.ivy is based on the widely used Eclipse platform which offers a sophisticated plugin mechanism to integrate third-
party modules. In these days, Eclipse which originally has been developed as an IDE for Java programmers evolved to a large
and vibrant ecosystem and is used for a triad of different tools and systems in almost every work sector. Therefore a huge
community exists that offers plugins (open source and commercial) and even web sites (Eclipse Marketplace) for browsing
and searching these plugins arose in the past years.

And the conclusion, you can use all these plugins and integrate them into your Axon.ivy installation to interact seamlessly
between your favourite plugin set and the built-in Axon.ivy features.

Note

Please follow the installation instructions of the specific plugin to integrate it into your Axon.ivy installation

System Events

Axon.ivy offers the concept of system events, which can be understood as messages that are broadcasted across the Axon.ivy
installation. While Axon.ivy itself (e.g. the workflow subsystem) generates events that interested participants may subscribe
to (e.g. to be informed when a case is created or finished), it is also possible for implementors to define their own events and
to broadcast them to any component that might be interested. Since this mechanism is session- and workflow independent, it
can also be used to implement inter-session communication (within the same Application).

Concept and general usage

System events are messages that are broadcasted across the Axon.ivy system and that will be delivered to any interested party.
System events have a name and are categorized, and they may carry an optional parameter object. System events can only
be sent within the same Application on an Axon.ivy Engine.

Currently two categories are defined: SystemEventCategory.THIRD_PARTY and
SystemEventCategory.WORKFLOW. The category THIRD_PARTY can be used to send (and receive) system events
that are generated by integrated third party applications (or processes). The category is reserved exclusively for this purpose;
i.e. the Axon.ivy Engine will never generate any events of this type.

http://www.eclipse.org
http://marketplace.eclipse.org//

Concepts

421

The Axon.ivy system itself currently only generates events of the category WORKFLOW. Inside this category, events with the
following names are generated:

• WorkflowSystemEvent.TASK_CREATED

• WorkflowSystemEvent.TASK_CHANGED

• WorkflowSystemEvent.CASE_CREATED

• WorkflowSystemEvent.CASE_CHANGED

All of those events carry a parameter object of the type WorkflowSystemEventParameter which gives access to the
identifiers of the workflow objects that have been created or modified. More system defined categories and events can be
expected in the future.

To send system events, client and/or third party applications must first create a SystemEvent object and then get a hold
of an IApplication object, which offers the method sendSystemEvent(SystemEvent event). Only events of
the category THIRD_PARTY can be sent by process applications, attempts to send system events of different categories will
result in an error.

To receive system events, clients must implement the interface ISystemEventListener
and must then register themselves on an IApplication object using
the method addSystemEventListener(EnumSet<SystemEventCategory> categories,
ISystemEventListener listener). It is strongly recommended, that the similar remove method is used, as soon as
clients are no longer interested in a specific event category.

Clients should only listen to system events they know the name of, all other events should be ignored. Clients should handle
received events as fast as possible, because handling will block the delivery of events to other receivers. Also the received
parameter object should never be modified (it shouldn't be modifiable in the first place), since this may affect the handling
by other receivers which will consequently receive a modified event object.

In Java, the handling of system events generally results in code similar to the following:

/**
 * Registers this participant for workflow system events.
 */
 public void registerForWorkflowEvents(IApplication application)
 {
 application.addSystemEventListener(EnumSet.of(SystemEventCategory.WORKFLOW));
 }

/**
 * Unregister this participant for all system events.
 */
 public void unregister(IApplication application)
 {
 application.removeSystemEventListener(EnumSet.allOf(SystemEventCategory.class));
 }

Concepts

422

/**
 * Implementation of ISystemEventListener.handleSystemEvent(...)
 * Events will only be delivered for the categories that this listener registered for
 */
 public void handleSystemEvent(SystemEvent event)
 {
 String eventName = event.getName();
 if ("thirdparty.mysystem.myevent".equals(eventName))
 {
 // do something
 }
 else if (WorkflowSystemEvent.TASK_CHANGED.equals(eventName))
 {
 // do something
 }
 // else: ignore event
 }

 /**
 * Distribute a new system event to all interested/registered listeners of my event.
 * MyEventParameter can be of any (serializable) type, the type is part of the event definition,
 * clients will have to cast accordingly.
 */
 public void sendMyEvent(IApplication application, MyEventParameter param)
 {
 SystemEvent event = new SystemEvent(SystemEventCategory.THIRD_PARTY, "thirdparty.mysystem.myevent", param);
 application.sendSystemEvent(event);
 }

Rich Dialogs can also send and receive SystemEvents via the broadcast mechanism. Read the section below to learn how.

How System Events work on an Axon.ivy Engine Enterprise Edition

An Axon.ivy Engine Enterprise Edition consists of multiple engine instances (nodes) that are running on different
machines.

Distribution of system events is handled in two ways on a Engine Enterprise Edition, depending on their category:

• THIRD_PARTY system events are distributed as cluster messages across all nodes, i.e. from the node that generates
the event to all other cluster nodes

• WORKFLOW system events are generated on each cluster node in parallel and then distributed locally only

Important implementation notes:

Since THIRD_PARTY events are distributed as messages in a Cluster, all custom event parameter objects must be
serializable.

Please be aware of the fact that having multiple running instances of a system event sender may lead to race conditions.
If you use system events for message exchange between e.g. processes and/or User Dialogs and third party systems
that are integrated via the Server Extension mechanism, you should ensure that a certain event is only sent once. This
may require that the third party system (e.g. an ESB) is only started on one node in the cluster. Otherwise a received
message from the external system may be injected into the Axon.ivy Engine Enterprise Edition system n times (once
for each node) instead of being sent only once.

How to send and receive System Events in Rich Dialogs

By using the event broadcast mechanism in combination with the System Events framework, Rich Dialogs can receive and
send system events as broadcast events.

Note

Check out the Chat Demo in the IvyDemos project (available from your Axon.ivy Designer installation directory
under applications/samples/IvyDemos) to see how System Events can be used to implement an inter-session
information exchange.

Concepts

423

The demo implements a simple chat application which makes usage of THIRD_PARTY system events to send
or receive messages from chat users, respectively.

Receiving System Events

Before the Rich Dialog can receive any events, it must register itself for the respective categories. This is done by calling
ivy.rd.subscribeToSystemEvent(SystemEventCategory). Typically this registration should happen in the
start method process of the Rich Dialog as shown below. Explicit de-registration is not necessary, all Rich Dialogs will
automatically be unregistered as soon as their panel is unloaded (i.e. when the Rich Dialog executes a Rich Dialog End
element).

Furthermore, the Rich Dialog must declare all the names of the system events it is interested in as accepted broadcast events
on it's interface. The category of the system event does not matter (they are defined in the registration call as described above).
However, the name of the accepted broadcast event must be exactly identical to the name of the system events that the rich
dialog is interested in. Also the type of the parameter must be identical to the type of the system event's optional parameter.
If names or parameter type do not match, then the system event will not be delivered.

The handling of the declared accepted broadcast events is then implemented with Rich Dialog event handler processes as usual.

Warning

Due to technical reasons, the name of an accepted broadcast event has to be a valid Java identifier. Therefore the
original name of a system event may be an illegal name for an accepted broadcast event (e.g. the system event
name foo.bar.baz will not be accepted because it contains punctuation). In such cases the name of the accepted
broadcast event should substitute all illegal characters with underscores, e.g. foo_bar_baz for the given example)

Sending System Events

Sending System Events from a Rich Dialog is fairly easy. There are two possibilities:

1. On the Rich Dialog interface declare a fired event with scope SYSTEM. Then use the Fire Event process element to send
the event. The category of the system event will always be THIRD_PARTY, the declared event's name will be used as
the system event's name and the (optional) parameter will become the system event's parameter.

Concepts

424

2. Use IvyScript/Java to send a system event through the IApplication.sendSystemEvent(SystemEvent) API
as described in the general usage section above.

425

Chapter 10. Troubleshooting
Introduction

Here you will find solutions to some of the most common problems related to Axon.ivy Designer. If you can't find your
solution here there are some other sources which could help:

Axon.ivy Q&A The Axon.ivy Q&A contains a considerable amount of questions and answers related to Axon.ivy
Designer and Engine.

Stack Overflow Problems related to common technologies like Java, JSF, Primefaces are answered on the web, e.g.
on Stack Overflow.

Support You can get support via ivy@axonivy.com (support may be subject to charging, depending on your
licence agreement).

Error Dialogs
Error Id

Error Dialogs shown to the user contain a unique error id. This error id can be used to search the log files for more information
about this error.

Error Report
On Error Dialogs it is possible to generate an Error Report. This report contains information about the error, the designer
machine and the current state of the Axon.ivy Designer.

Note

If you need to contact the support because of an error, please generate an Error Report for it. Most of the time
it contains the necessary information, to find and solve the problem.

On the Rich Dialog error dialog use the Copy button to generate an error report and copy it to the clipboard.

On the HTML error page use the Open Error Report button at the end of the error page to open the Error Report. Use CTRL-
A and CTRL-C to copy the Error Report to the clipboard.

The Event Details Dialog of the Runtime Log View provides a button to generate and save an error report for a given log entry.

Moreover, you can also use the menu Axon.ivy > Debug > Save Debug Report to generate and save such a report without
an error.

Startup Problems
Start of Designer fails

Immediately after the start of the Axon.ivy Designer you get the error dialog below and the Designer does not start.

Figure 10.1. Error dialog when Axon.ivy Designer.ini broken

http://answers.axonivy.com/
http://stackoverflow.com/

Troubleshooting

426

Most probably the configuration file Axon.ivy Designer.ini for the Designer is broken. Ensure that all parameters you added
are correct. Furthermore, ensure that you do not have empty lines in the file. No whitespace characters (such as space or tab)
except line feed and carriage return are allowed at the end of a line.

Start of Elasticsearch / Business data manager fails
If Elasticsearch cannot be started make sure that the ivy Designer is not running in a folder that has special Windows UAC
settings.

Alternatively, try creating a plugins/ folder inside the elasticsearch/ folder in the main designer directory.

Memory Problems
OutOfMemoryException: Java heap space

If this error occurs, then the Designer requests more memory than it is allowed to use. This can happen when a lot of data
is used during the process simulations. Ensure, that your computer has enough memory. Then you can increase the maximal
memory consumption of the Axon.ivy Designer. Just open the Axon.ivy Designer.ini and change the value in the line after
-Xmx to a higher one.

Note

If you have a 64 Bit computer use the 64 Bit version of the Axon.ivy Designer. This allows you to allocate
more than 2 GB memory.

Graphics Problems
Superimposition of UI elements when scrolling

With a combination of certain Java 1.6, Windows, DirectX and graphics adapter driver versions, some strange UI effects may
occur. Mostly happening when the UI must be redrawn very frequently (e.g. scrolling tables, moving windows), it looks like
some UI elements are superimposed by some other UI elements.

First try to update the driver of your graphics adapter. If this does not work, you may want to switch off DirectX usage for
the Designer. Just add the following line to the Axon.ivy Designer.ini and the problem should be gone.

-Dsun.java2d.d3d=false

OS X Problems
No Java Execution Environment is set (Problem: "Unbound
classpath container: 'Default System Library'")

Solution: In the Preferences tree Java/Installed JREs add a Standard VM located in the Axon.ivy Designer jre/
Contents/Home directory and select it.

Troubleshooting

427

Key bindings in the process editor don't work sporadically

Solution: Close the process and reopen it.

Logging

Configure ULC logging on server and client

It is possible to log ULC communication and status messages both on client and server side. Both a default log level and a
log level per known Ivy test user can be configured, as well as a log file path/name where the log of an ULC session should
be stored permanently.

To configure ULC logging, the files configuration/jnlpconfig.any and configuration/ulclogconfig.any within the Axon.ivy
Designer installation folder must be edited. The former one controls the client-side logging, the latter one the server-side
logging. The log configurations are similar in both cases and edited with Anything notation.

To modify the client logging properties locate the following section in jnlpconfig.any:

...
/log-level {
 /user-specific {
 /johndoe FINER
 }
 /default WARNING
 /log-to-file "C:/temp/xpertivy_ulc_client.log"
}
...

To modify the server logging properties locate the following section in ulclogconfig.any:

{
 /user-specific {
 /johndoe FINER
 }
 /default WARNING
 /log-to-file "xpertivy_ulc_server.log"
}

To enable user-specific logging on server side and/or client side, enter the known name of the Ivy test user to log for in the
/user-specific section, followed by a valid log level (one of SEVERE, WARNING, INFO, FINE, FINER, FINEST)
just as specified in the example configurations with the user johndoe. Use double quotes around the Ivy test user name if it
contains special (i.e. non-ASCII) characters or white space.

To set the default log level (which will be used for all sessions) set the log level for the key /default.

Finally, to enable logging to a file, enter a filename in double quotes for the key /log-to-file as shown above. If the /
log-to-file slot is omitted altogether or if it's value is a *, then no log file will be created.

Note

Changes in log configurations take place immediately for all new sessions or client application starts; a restart
of the designer is not necessary. However, you have to restart any running client applications for the new log
settings to take effect.

The created log files will automatically include the user name (if user-specific logging is enabled), the HTTP
session ID and an ID for the application. The two ID's mentioned are part of the client and the server log file,
so it is easy to find the two logs related to a client-server communication.

Troubleshooting

428

Tip

For reasonable results a default level of WARNING or INFO is recommended. For error analysis, FINER on the
client and FINER on the server is recommended, on a per-user basis.

If you enable ULC logging, it is recommended to specify the /log-to-file parameter. This way the log
output is redirected to a file, otherwise the logs are written to the console.

Warning

Please bear in mind that the log file path that you specify may not be in correct format for every client platform
(Linux/Windows). If this should be the case then the log files will be created in the client system's default
temporary directory.

Be aware that log files can become very large (up to several hundred MB per day and user if FINE /FINER/
FINEST is used as log level).

429

Chapter 11. References

Conventions used in this book
This section covers the conventions used in this book.

Typographic Conventions

Constant width Used to indicate source code, e.g. Java or IvyScript class names, properties or methods.

Italics Used to

• introduce terms

• for URLs

• for email addresses

• for filenames and directory paths

• define the navigation within Axon.ivy application menus

• for referencing GUI elements (e.g. Open the Code tab for editing the properties).

bold Used to highlight important terms in a text.

{replacable text} Names or parts of strings that are dependent on the user environment, are marked with brackets.
See the following example:

Navigate to {Designer Install Directory}/configuration/demo.lic

Displays

Note

The note designates a note relating to the surrounding text.

Tip

The tip designates a helpful tip relating to the surrounding text.

Warning

The warning designates a warning relating to the surrounding text.

Screen

A screen is used to show keybord input. e.g. script samples

 out.x=in.y;

References

430

Sidebar

Sidebar

In a sidebar you will find background information.

Reference
This chapter provides a linked reference of the Axon.ivy application parts.

Editors
• Case Map editor

• Configuration editor

• Content Object editor

• Database Configuration editor

• Data Class editor

• Entity Class editor

• Java editor

• Project Deployment editor (formerly known as Library editor)

• Overrides editor

• Process editor

• REST Client Configuration editor

• Rich Dialog Panel editor

• HTML Dialog Panel editor

• User Dialog Interface editor

• Rich Dialog Interface editor

• Role editor

• User editor

• Web Service Configuration editor

• Persistence Configuration editor

Views
• Breakpoints view

• CMS Tree view

• Data Binding view

• Error view

• Event Mapping view

References

431

• Expressions view

• History view

• Java Beans view

• Axon.ivy Outline view

• Process Performance view

• Process Outline view

• Process Templates view

• Problems view

• Axon.ivy Projects view

• Properties view

• Reference view

• Runtime Log view

• Tasks view

• Variables view

• Widget Configuration view

• Web Browser view

Wizards
• New Bean Class Wizard

• New Case Map Wizard

• New Data Class wizard

• New Entity Class wizard

• New Event Mapping wizard

• New Override wizard

• New Process wizard

• New Process Group wizard

• New Axon.ivy Project wizard

• New User Dialog wizard

• New Html Dialog View wizard

• Rename wizard

• Move wizard

• Copy wizard

• Delete wizard

• Export Axon.ivy Archive wizard

References

432

• Import Axon.ivy Archive wizard

• Import Axon.ivy Modeler Processes wizard

• Import into CMS

• Export from CMS

Perspectives
See also the Perspectives section in the Introduction chapter.

• Process Model Perspective

• Process Development Perspective

• Rich Dialog Perspective

Process Elements
See also Process Elements reference chapter.

• Request Start

• Web Page

• Alternative

• Call & Wait

• Split

• Join

• Task

• Task Simple

• “Error Start”

• Event Start

• Intermediate Event

• Process End

• Script Step

• Database Step

• E-Mail

• PI (Programming Interface)

• Web Service

• REST Client

• Independent Sub-Process (Call Sub)

• Embedded Sub Process

• Note

References

433

• User Dialog

• Init Start

• Method Start

• Event Start

• Broadcast Start

• Rich Dialog Script Step

• Fire Event

• UI Synchronization

• Process End

• Exit End

• Generic

• User

• Manual

• Script

• Receive

• Rule

• Send

• Service

Widgets
See Rich Dialog panel widgets reference chapter.

• ButtonGroup

• RBorderLayoutPane

• RBoxPane

• RBrowser

• RButton

• RCardDisplay

• RCardPane

• RCheckBox

• RCheckBoxMenuItem

• RCloseableTabebdDisplay

• RCollapsiblePane

• RComboBox

• RDatePicker

References

434

• RFiller

• RFlowLayoutPane

• RGridBagLayoutPane

• RGridLayoutPane

• RHtmlPane

• RHyperlink

• RLabel

• RList

• RListDisplay

• RLookupTextField

• RMenu

• RMenuBar

• RMenuItem

• RMenuSeparator

• RPasswordField

• RPopupMenu

• RProgressBar

• RRadioButton

• RRadioButtonMenuItem

• RScrollBar

• RScrollPane

• RSlider

• RSplitPane

• RTabbedDisplay

• RTable

• RTableTree

• RTaskPane

• RTaskPaneDisplay

• RTaskPaneContainer

• RTextArea

• RTextField

• RToggleButton

• RToolBar

References

435

• RTree

IvyScript
See IvyScript section for more information

• IvyScript language

• IvyScript reference

• Public API

Miscellaneous
• Rich Dialog User Context

• Rich Dialog User Context Examples

• Rich Dialog UI State

Glossary
This chapter provides an alphabetized glossary for specialized expressions and terms that are employed in this book.

Application On the Axon.ivy Engine one or more Applications can exist. The Application defines the
container wherein the Process Models can be deployed.

Also Users and Roles are defined and Tasks and Cases are stored in an Application.

See also section Application in chapter Deployment.

Case A Case is one concrete instance of a Process. It must not necessarily run through all Steps
of a Process. A Process may define a different handling for different Cases depending on
the information of a Case. For example by using the Alternative Element .

A Case holds the information used to carry out the Process. This is on the one hand
information about the Case like the current position in the Process. On the other hand this
is information collected during the Case, which is passed from one Step to the next in the
form of the Process Data

Connector A Connector connects two Steps of a Process. This defines the sequence of these two steps.

Form Field A Form Field is a JSF code snippet which serves content for a specific data class field type
(e.g. a Label and a Datepicker for a Date). The New User Dialog Wizard create forms with
Form Fields.

Html Dialog A Html Dialog is an implementation of a User Dialog. The Html Dialog is implemented
with (HTML/JSF).

Layout A Layout contains the main structure of a Html page (e.g. a header, content and footer
section). For Web Pages the layouts are defined in the CMS. For Html Dialogs the layouts
are defined in the webContent folder.

Process A Process is an abstract description how a group of Cases will be handled. It consists of
Process Elements connected with each other. Every time a Process is started, a Case and
a Task is created.

Process Data The Process Data is the data passed from one Step to the next. Its represented by a data class
used for the whole process. Even though every Step can create a new instance of this data
class to be passed to the next Step it will always be an instance of the same data class.

References

436

Process Element Process Elements are the bricks a process is built of. Ordered with Connectors they become
the Steps of a Process.

There are 3 groups of process elements.

• Activities do something. Like running a script or let somebody else do something for
example by showing a User Dialog.

• Gateways structure a Process. For example a Alternative decides which way a Case runs
through the Process.

• Events are notifications of things that happen outside the process.

The chapter Process Elements describes all the Process Elements available in Axon.ivy

Process Model A Process Model on the Engine corresponds to an Axon.ivy project on the Designer.
The difference is that a Process Model may hold multiple different versions of the same
Axon.ivy project. These are called Process Model Version.

See also section Process Model in chapter Deployment.

Process Model Version A Process Model can have multiple versions called Process Model Versions. These versions
allow to change an Axon.ivy project without worrying about the compatibility of currently
running Cases on the Engine.

See also section Process Model Version in chapter Deployment.

Rich Dialog A Rich Dialog is an implementation of a User Dialog. The Html Dialog is implemented
with (Java/ULC).

Role A User has one or multiple Roles which define what the user is allowed to do.

Signature In computer programming, especially object-oriented programming, a method is commonly
identified by its unique method signature. This usually includes the method name, and the
number, types and order of its parameters, but usually excludes the return type(s) of the
method.

Within Axon.ivy, signatures act as unique identifiers for specific start elements (e.g. method
starts, request starts, trigger starts, call sub starts), within the same process, only one element
with the same signature may exist. The same holds true for signatures of start methods and
events on a User/Rich Dialog interface.

Step A Process Element placed in a Process becomes a Step of this Process. The Connectors
define the order of the Steps in a Process.

Task A Task is a unit of work which is indivisible. It has to be carried out by one user in one piece.
If anything goes wrong during the execution of a task, we must return to the beginning of
the task.

It's not possible to work on a Case without a Task. Every time a new Case is started a Task
will be created. While working on a Case / Task new Tasks can be created. This allows to
interrupt the work on a Case and to hand it over to another user if necessary.

A Task consists of one or multiple Steps. It begins for example with a Request Start or a
Task Switch Element. And ends for example with the next Task Switch Element or at the
Process End.

Task can be assigned to a specific User, a Role or to Everybody.

User A User is a person interacting with a Case. The user is identified by a unique user name.

If a User is not identified, we speak of an anonymous User.

References

437

User Dialog A User Dialog is a concept of an User Interface. User Dialogs can be implemented as Html
Dialog (HTML/JSF) or as Rich Dialog (Java/ULC).

View Type A View Type defines the default content of a User Dialog View. Axon.ivy has predefined
View Types, i.e. Page and Component.

	Axon.ivy 7.1
	Table of Contents
	Chapter 1. Introduction
	What is Axon.ivy
	Why Axon.ivy?

	About this guide
	Axon.ivy Workbench
	Axon.ivy Editors and Views

	Perspectives
	Perspectives provided by Axon.ivy
	Other Perspectives

	Most important menu entries
	File menu
	Search menu
	Project menu
	Axon.ivy menu
	Window menu
	Help menu

	Most important toolbar items
	Useful Commands (Shortcuts)
	Axon.ivy Preferences (Workspace Preferences)
	Deprecation Settings
	Drag and Drop Settings
	Email Settings
	Developer SMTP

	IvyScript Settings
	Process Editor Settings
	Process Engine Settings
	SSL Client Settings

	Common UI Components
	IvyScript Editor
	Macro Text Editor
	Smart Buttons
	Refactoring Wizards
	Rename Wizard
	Move Wizard
	Delete Wizard
	Copy Wizard

	Chapter 2. Process Modeling
	Projects
	Overview
	Ivy Archives
	Ivy Project View
	New Project Wizard
	Overview
	Accessibility
	Features

	Importing a Project
	Overview
	Accessibility
	Features
	Importing demo projects

	Exporting a Project
	Overview
	Accessibility
	Features

	Converting old 4.x Projects
	Project Properties (Project Preferences)
	Axon.ivy - Project Information
	Content Management System Settings
	Data Class Settings
	IvyScript Engine
	Java

	Project Deployment Descriptor
	Deployment Descriptor Editor
	Accessibility
	Deployment Tab
	Required Projects Tab

	Project Graph view
	Toolbar actions
	Graph actions
	Accessibility

	Validating Axon.ivy projects and resources
	Overview
	Validating projects and resources
	Validation preferences

	Process Modeling
	Process Kinds
	Business Process
	Embedded Subprocess
	Independent Subprocess (Callable)
	Web Service Process
	User Dialog Logic

	New Process Wizard
	Overview
	Accessibility
	Process Definition (page 1)
	Process Data (page2)
	Process Data with simple mapping (page2)

	New Process Group Wizard
	Overview
	Accessibility
	Features

	Import Axon.ivy Modeler Processes
	Overview
	Accessibility
	Features
	Compatibility
	Mapping of Elements by the importer

	Process Properties
	Name and Description
	Values
	Web Service Process

	Process Editor
	Accessibility
	Palette
	Editor Area
	Editor Menu
	Element Menu
	Arrow Menu
	Selection Menu
	Shortcut Keys

	Swimlanes
	Process Model Reporting Wizard
	Overview
	Accessibility
	Features

	Process Outline View
	Overview
	Accessibility
	Features

	Process Template View
	Overview
	Accessibility
	Features
	Export / Import

	Problems View
	Overview
	Accessibility
	Features

	Tasks View
	Overview
	Accessibility
	Features

	Reference View
	Overview
	Overview of supported References

	Accessibility
	Features

	Simulating process models
	Simulation
	Engine Actions
	Content and Formatting Language Settings
	Overview
	Accessibility
	Settings
	How to use in IvyScript

	Breakpoints
	Process Element Breakpoints
	Data Class Attribute Value Change Breakpoints

	Debugger
	Debug View
	History View
	Breakpoints View
	Variables View
	Expressions View
	Runtime Log View
	Overview
	Accessibility
	Columns
	Logged Event Details
	How to log

	Process Performance View
	Overview
	Accessibility
	Analyse the Performance Statistic

	Case Maps
	Introduction
	Case Map Wizard
	Overview
	Accessibility
	Features

	Case Map Editor
	Case Map Element Reference
	Stage
	Process
	Process Precondition

	Sidestep
	Sidestep Precondition

	Case Map scripting
	Available variables

	Case Map Animation

	Case Map Statistics (Preview)
	Tasks
	Throughput time

	Workflow execution of Case Map Processes
	Responsible role
	Stage switching

	Process Elements Reference
	Common Tabs
	Name Tab
	Output Tab
	Code Tab
	Panel Tab
	Data Cache Tab

	Start
	Element Details
	Inscription
	Name Tab
	Start Tab
	Request Tab
	Trigger Tab
	Task Tab
	Tab Task - Business
	Business calendar

	Tab Task - Custom fields

	Case Tab

	Program Start
	Element Details
	Inscription
	Name Tab
	Tab Start
	Tab Editor

	Error Boundary Event
	Element Details
	Inscription
	Name Tab
	Error Tab
	Output Tab

	Error Start
	Element Details
	Inscription
	Name Tab
	Error Tab
	Output Tab

	Signal Boundary Event
	Element Details
	Inscription
	Name Tab
	Signal Tab
	Output Tab

	Signal Start
	Element Details
	Inscription
	Name Tab
	Signal Tab
	Output Tab

	Alternative
	Element Details
	Inscription
	Name Tab
	Tab Condition>

	Split
	Element Details
	Inscription
	Name Tab
	Output Tab
	Code Tab

	Join
	Element Details
	Inscription
	Name Tab
	Output Tab
	Code Tab

	Task Switch Gateway
	Element Details
	Inscription
	Name Tab
	Output Tab
	Task Tab
	Custom fields Tab
	Business Information Tab
	Business calendar

	Case Tab
	Custom Fields Tab
	Business Information Tab
	Tags Tab (Deprecated)

	End Page Tab

	Task Switch Event
	Element Details

	Wait Program Intermediate Event
	Element Details
	Inscription
	Name Tab
	Event Tab
	Tab Editor
	Task Tab
	Output Tab

	Call & Wait
	Element Details
	Inscription
	Name Tab
	Call Tab
	Wait Tab
	Tab Editor
	Task Tab
	Output Tab

	Process End Page
	Element Details
	Inscription
	Name Tab
	End Page Tab

	Error End
	Element Details
	Inscription
	Name Tab
	Error Tab
	Code Tab

	Process End
	Element Details
	Inscription
	Name Tab

	User Task
	Element Details
	Inscription
	Name Tab
	Call Tab
	Task Tab
	Case Tab
	Output Tab

	Web Page
	Element Details
	Inscription
	Name Tab
	Tab Dialog

	User Dialog
	Element Details
	Inscription
	Name Tab
	Call Tab
	Display Tab (only available for Rich Dialogs)
	Output Tab

	Script Step
	Element Details
	Inscription
	Name Tab
	Output Tab
	Code Tab

	DB Step
	Element Details
	Inscription
	Name Tab
	DB Tab
	Data Cache Tab
	Output Tab
	Code Tab

	Web Service Call Activity
	Element Details
	Inscription
	Name Tab
	Request Tab
	Response Tab
	Data Cache Tab
	Web Service Tester

	REST Client Activity
	Element Details
	Inscription
	Name Tab
	Request Tab
	Response Tab

	JSON to Java
	Customization
	Call from Java
	Re-use configuration

	E-Mail Step
	Element Details
	Inscription
	Name Tab
	Tab Header
	Tab Content
	Tab Attachments

	Embedded Subprocess
	Element Details
	Inscription
	Name Tab

	Call Sub
	Element Details
	Inscription
	Name Tab
	Process Call Tab
	Output Tab

	Trigger Step
	Element Details
	Inscription
	Name Tab
	Trigger Tab
	Output Tab

	PI (Programming Interface) Step
	Element Details
	Inscription
	Name Tab
	Tab PI
	Tab Editor

	Complete Code sample

	Note
	Element Details
	Inscription
	Tab Name

	Web Service Process Start
	Element Details
	Inscription
	Name Tab
	Start Tab
	Result Tab
	Web Service Tab
	Task Tab
	Tab Task - Business
	Business calendar

	Tab Task - Custom fields

	Case Tab

	Customization

	User Dialog Start
	Element Details
	Inscription
	Name Tab
	Start Tab
	Output Tab
	Embedded Rich Dialogs Tab (only available with Rich Dialogs)
	Result Tab

	User Dialog Method Start
	Element Details
	Inscription
	Name Tab
	Method Tab
	Output Tab
	Result Tab

	User Dialog Event Start
	Element Details
	Inscription
	Name Tab
	Output Tab
	Code Tab

	User Dialog Broadcast Start
	Element Details
	Inscription
	Name Tab
	Broadcast Tab
	Output Tab

	User Dialog Script Step
	Element Details
	Inscription
	Name Tab
	Output Tab
	Panel Tab (only available with Rich Dialogs)
	Code Tab

	User Dialog Fire Event Step
	Element Details
	Inscription
	Name Tab
	Event Tab

	User Dialog UI Synchronization
	Element Details
	Inscription
	Name Tab

	User Dialog Process End
	Element Details
	Inscription
	Name Tab

	User Dialog Exit End
	Element Details
	Inscription
	Name Tab

	BPMN Activity Elements
	Available BPMN Activity Elements
	Generic
	User
	Manual
	Script
	Receive
	Rule
	Send
	Service

	Chapter 3. Data Modeling
	Data Classes
	Types of Data Classes
	New Data Class Wizard
	Overview
	Accessibility
	Features

	Data Class Editor
	Overview
	Accessibility
	Attributes
	Attribute refactoring
	Combine into new Data Class refactoring

	Business Data Store
	Business Data Concept
	Identity
	Business Case Data
	Migrate data classes
	Optimistic locking

	Business Data Usage
	Associate value with the business case (BusinessCaseData context)
	Store (without BusinessCaseData context)
	Load (without BusinessCaseData context)
	Search
	Store with own Id
	Samples

	Business Data Limitations
	Customization
	Custom constructor
	Field without get/setter
	Own module

	Persistence
	Entity Classes
	New Entity Class Wizard
	Overview
	Accessibility
	Features

	Entity Class Editor
	Overview
	Accessibility
	Features
	Section Class Comment
	Section Attributes
	Association Editor
	Association
	Cascade
	Mapped by
	Orphans

	Persistence Configuration Editor
	Overview
	Accessibility
	Features

	Generate database schema from persistence unit
	Generation options (Step 1)
	Generation preview (Step 2)
	Accessibility

	Persistence API
	Overview
	Persist an entity object
	Find an entity object by id
	Merge an entity object
	Remove an entity object
	Refresh an entity object
	Persistence Queries (JPA QL)
	Case Sensitivity
	Single Result
	Result List
	Execute Update
	Parameter binding
	Paging the result
	Ordering
	Distinct results
	Comparison expressions
	Calling functions
	Aggregate functions

	Accessibility

	Chapter 4. IvyScript
	Introduction
	IvyScript Language
	Language Elements
	Conditions
	Loops
	Exception Handling

	Null handling / Automatic object creation

	IvyScript Editor
	Overview
	Features
	Content Assist
	Parameter hopping
	Shortcuts
	Smart Buttons

	Browsers
	Attribute and Method Browser
	Function Browser
	Data Type Browser

	Public API
	IvyScript Reference
	Operators
	Ivy Script Data Types
	Boolean
	Date
	DateTime
	Time
	Duration
	Number
	String
	Record
	Recordset
	XML
	Tree
	Binary
	List
	File

	The Environment Variable ivy

	IvyScript-Java Integration
	Call Java methods and fields
	Working with different Date, Time and DateTime implementations
	Auto casting rules

	Chapter 5. CMS
	Content Management System
	CMS Structure
	Content Object Types

	CMS Access
	In Axon.ivy
	Access with a Browser
	Content resolution

	CMS Manipulation
	CMS View
	Accessibility
	Features
	Display Content Object values
	Inline Editing
	Filter the view
	Add new Content Objects
	Other actions
	Drag and Drop

	Content Object Editor
	Accessibility
	Content Object header
	Content Object Values area

	Content Object Value Editors
	String Editor
	Text Editor
	Image Editor
	Document Editor
	Source Editor
	CSS Editor
	HTML Table Editor
	HTML Link Editor
	Result Table Editor
	HTML Page Editor
	HTML Panel Editor
	Smart Table Content Editor
	JSP Editor
	Layout Editor

	CMS Translation
	Export from CMS
	Import into CMS

	Chapter 6. User Interface
	User Dialogs
	User Dialog Concept
	Interface
	Logic
	Data
	User Dialog Interface Editor
	Overview
	Accessibility
	Interface tab
	Start Methods
	Methods

	Metadata tab

	New User Dialog Wizard
	Overview
	Accessibility
	Page 1: Dialog Definitions
	Page 2: Dialog Data

	Html Dialogs
	PrimeFaces JSF Component Library
	Themes
	Html Dialog Data Binding and Event Mapping
	Data Class Auto Initialization

	Html Dialog Editor
	Overview
	Accessibility
	Graphical View
	Default Actions
	Visual Markers

	Source View (Code)
	Content Assist (Ctrl+Space)
	Quick Fix (Ctrl+1)
	CMS Quick Assist (Ctrl+1)
	CMS Drag & Drop support
	Linking to CMS content (F3 or Ctrl)
	Linking to Data Class (F3 or Ctrl)
	Linking to Logic (F3 or Ctrl)

	Properties View

	Html Dialog View Types
	Html Dialog Page
	Html Dialog Layouts
	Custom Html Dialog Layouts

	Html Dialog Component
	View Definition
	Usage
	Start Method

	Html Dialog Preferences
	Accessibility
	Html Dialog View Type Templates
	Form Field Templates

	Html Dialog with Multiple Views
	How to add a view
	How to switch views during runtime

	Converters
	Custom Faces Converters

	Validators
	Client Side Validation

	Managed Beans
	Bean Validation (JSR 303)

	Ajax Method Call API
	Error Handling
	HTTP Request
	AJAX Request
	View Expired Exception

	Rich Dialogs
	Process based Rich Dialogs
	Logic
	Data
	Panel
	Data Binding
	Event Mapping

	Rich Dialog Interface Editor
	Interface tab
	Fired Events
	Accepted Broadcasts

	Metadata tab

	Rich Dialog Editor
	Overview
	Accessibility
	Editor Area
	Design Mode
	Source Mode

	Widget Palette
	Layout Managers

	Java Beans View
	Overview
	Accessibility
	Features

	(Rich Dialog Editor) Properties View
	Overview
	Accessibility
	Features

	Widget Configuration View
	Overview
	Accessibility
	Features
	Tab General
	Overview
	Accessibility
	Features

	Tab Style
	Overview
	Accessibility
	Features

	Data Binding Tab
	Tab Text/Icon
	Overview
	Accessibility
	Features

	Tab ComboBox Data
	Overview
	Accessibility
	Features

	Tab Lookup Data
	Overview
	Accessibility
	Features

	Tab List Data
	Overview
	Accessibility
	Features

	Tab Table Data
	Overview
	Accessibility
	Features

	Tab Cell Widget
	Overview
	Accessibility
	Features

	Tab Tree Data
	Overview
	Accessibility
	Features

	Tab TableTree Data
	Overview
	Accessibility
	Features

	Tab Validation
	Overview
	Accessibility
	Features

	IvyScript Editor Widget
	Overview
	Features

	Ivy Outline View
	Overview
	Accessibility
	Features

	Data Binding View
	Overview
	Accessibility
	Features

	New Event Mapping Wizard
	Overview
	Accessibility
	Features

	Event Mapping View
	Overview
	Accessibility
	Features

	Drag and Drop in Axon.ivy Designer
	Overview
	Accessibility

	Rich Dialog User Context
	Configuration
	Context Mode
	Standalone
	Embedded

	Context Name
	Default Configuration

	Rich Dialog User Context Examples
	Standalone Configuration
	Technically one Rich Dialog, but functional multiple different usages
	Configuration for Financial News:
	Configuration for local News:

	Embedded Rich Dialog
	Configuration of NewsList
	Configuration of NewsConfiguration

	Rich Dialog UI State

	Rich Dialog Widget Reference
	ButtonGroup
	Chart widgets
	RBooleanCellWidget
	RBorderLayoutPane
	RBoxPane
	RBrowser
	RButton
	RButtons in Frames
	Badge mode for RButton

	RButtonCellWidget
	RCardDisplay
	RCardPane
	RCheckBox
	RCheckBoxMenuItem
	RCloseableTabbedDisplay
	RCollapsiblePane
	RComboBox
	RComboBoxCellWidget
	RDatePicker
	Validation
	Attributes
	Events
	Summary

	RFiller
	Style Configuration

	RFlowLayoutPane
	RGridBagLayout
	RGridLayoutPane
	RHtmlPane
	RHyperlink
	RHyperlinkCellWidget
	RLabel
	RList
	RListDisplay
	RLookupTextField
	RMenu
	RMenuBar
	RMenuItem
	RMenuSeparator
	RPasswordField
	RPopupMenu
	RProgressBar
	RRadioButton
	RRadioButtonMenuItem
	RScrollBar
	RScrollPane
	RSlider
	RSplitPane
	RTabbedDisplay
	RTabbedPane
	RTable
	RTableTree
	RTaskPane
	RTaskPaneContainer
	RTaskPaneDisplay
	RTextArea
	Validation

	RTextField
	Validation

	RTextFieldCellWidget
	RToggleButton
	RToolBar
	RTree
	PDF Viewer Widget
	Portal Display
	Refresh
	Configuration

	Web Page
	Using Web Pages (web content) in a Business Process
	Creating and Editing Web Pages from within the Process
	No page has been specified yet
	A page is already specified

	Where Web Pages are stored

	HTML content in the CMS
	Web Page Editor
	HTML Panel Editor
	Overview
	Menus
	Context Menus
	Buttons and Check boxes

	HTML Table Editor
	Result Table Editor
	HTML Link Editor
	Configuring Text, Button, Image and Timed Auto-Redirect Links
	Configuring a Form Link
	Configuring Form Field Details

	Smart Table Content Editor
	Overview
	Accessibility
	Features

	JSP Editor
	Layout Editor
	Link Browser
	Other content editors

	HTML content in the Web Content Folder
	HTML Best Practice
	How to provide own HTML Validation Scripts

	Chapter 7. 3rd Party Integration
	Introduction
	Java Interface
	Database
	Web Services
	Call a remote Web Service
	Provide a Web Service for third parties
	Getting started

	REST Services
	Call a remote REST Service
	Provide own REST Services
	Workflow API

	Chapter 8. Configuration
	Configuration Management
	Configuration Management
	Configuration Editor
	Accessibility
	Configuration Tree
	Configuration Editor Area
	Multi language Configuration Selector

	Renderers Configuration
	Smart Table Configuration Editor

	Configuration Types
	Format Configurations
	Purpose
	Editor

	Style Configurations
	Purpose
	Editor

	Input Validation Configurations
	Purpose
	Editor
	General Settings
	Specific Settings

	Validation Framework
	Supplied Features by the Validation Framework
	Widgets of the Validation Framework
	Configurations
	Programming Interface (API)

	Environments
	Editor
	Environment settings
	Change environment for Simulation
	Change environment at runtime

	Global Variables
	Editor
	Access global variables in IvyScript

	Database Configuration
	Database Configuration Editor
	Overview
	Accessibility
	Environments
	Features

	REST Clients Configuration
	REST Client
	REST Client Editor
	REST Clients Tree Editor
	REST Client Details Editor
	REST Client Section
	Authentication Section
	Features Section
	Properties Section

	Web Service Clients Editor
	Client Tree
	Client Details Editor
	Web Service Client Section
	Authentication Section
	Features Section
	Properties Section
	Endpoint URI Section

	Environments

	Roles and Users
	Role Concept
	Member Role

	Role Editor
	Test User Editor

	Configuration files
	Introduction
	log4jconfig.xml
	jnlpconfig.any
	ulclogconfig.any

	Chapter 9. Concepts
	Adaptive Case Management
	Adaptive implementation
	Invoking optional processes
	Keeping loosely coupled processes in same context
	Aborting tasks
	Share data between processes
	Business Data analytics
	Regaining the big picture
	Conclusion

	Signal Reference
	Sending Signals
	Send a Signal programmatically
	Send a Signal manually in the Designer

	Receiving Signals
	Signal Boundary Event
	Signal Start Event

	Tracing Signals

	Workflow
	Case and Task
	Business Case
	Lifecycle

	Case and Task Categories
	Workflow API
	Task and Case queries
	Task and Case manipulation
	REST API

	Workflow States
	Process without Task switch
	Process with session timeout
	Process with Task switch
	Task switch states in detail
	Task with session timeout
	User Task
	Signal Boundary Event
	Other task states

	Offline Tasks
	Offline Task in a Process
	Offline Dialogs
	Geo Location

	Data Storage
	Content Management
	Web Content Folder
	Filesystem
	HTML User Dialog Resources
	Database
	Persistency (Java Persistence API)
	Web Service
	Global Variables
	Application Custom Properties
	User Properties
	Rich Dialog User Context
	Summary

	Overrides
	The Concept of Overrides
	Case Scope
	Example: The Acme Web shop
	General Definition

	Process Facade

	Overrides Editor
	Overview
	Accessibility
	Features

	New Override Wizard
	Overview
	Accessibility
	Features

	Error Handling
	Error Codes
	Example
	System Errors

	Throwing Errors
	Error End Event
	Error handling in Html Dialog
	Default Html Dialog Error Handling
	Exit an Html Dialog by an Error End Element

	IvyScript or Java Code
	Unhandled Script exception
	Throwing an error programmatically

	Elements throwing System errors

	Catching Errors
	Error Boundary Event
	Error Start Event
	Loop Prevention
	Use Case 1
	Use Case 2

	Project Error Process
	Error Object

	Rule Engine
	Decision tables and DRL files
	Execute rules
	Demo project

	Extensions
	Extendable Process Elements
	New Bean Class Wizard
	Overview
	Accessibility
	Features

	Provide your own process elements
	Axon.ivy Extension Mechanism
	Build an Axon.ivy extension bundle (Eclipse plugin)
	Installation

	Extension Point Reference
	Rich Dialog Client Side Libraries
	Providing a Custom Certificate
	Install a Java Developer Kit (JDK)
	Creating a custom certificate
	Signing the Rich Dialog client libraries
	Deploying custom signed Rich Dialog client libraries
	Restrictions

	Providing custom ULC Widgets
	Using custom ULC Widgets
	Packing custom ULC Widgets to an Axon.ivy Rich Dialog Client Extension
	Deploying Axon.ivy Rich Dialog Client Extensions
	Restrictions

	Troubleshooting Java Web Start Cache Problems

	Deployment
	Application
	Process Model
	Process Model Version
	Configuration Example
	Axon.ivy Project Deployment
	Export all Project Files to a ZIP-File

	Continuous Integration
	Maven build plugin
	Runtime
	Configuration
	Technical documentation

	Continuous Integration Job with Jenkins

	Miscellaneous
	Axon.ivy Search
	The search page
	The search result view
	Thumbnail Results for Rich Dialog Search

	Update Notification
	Data Caching
	Caches
	Access and Life Cycle
	Invalidation

	Eclipse Plugin Mechanism
	System Events
	Concept and general usage
	How to send and receive System Events in Rich Dialogs
	Receiving System Events
	Sending System Events

	Chapter 10. Troubleshooting
	Introduction
	Error Dialogs
	Error Id
	Error Report

	Startup Problems
	Start of Designer fails
	Start of Elasticsearch / Business data manager fails

	Memory Problems
	OutOfMemoryException: Java heap space

	Graphics Problems
	Superimposition of UI elements when scrolling

	OS X Problems
	No Java Execution Environment is set (Problem: "Unbound classpath container: 'Default System Library'")
	Key bindings in the process editor don't work sporadically

	Logging
	Configure ULC logging on server and client

	Chapter 11. References
	Conventions used in this book
	Typographic Conventions
	Displays
	Screen
	Sidebar

	Reference
	Editors
	Views
	Wizards
	Perspectives
	Process Elements
	Widgets
	IvyScript
	Miscellaneous

	Glossary

